Simple molecule ROS map
ROS@Nucleus

Identifiers
CHEBI:26523

Maps_Modules
HMC:ACTIVATING_INVASION_AND_METASTASIS
 EMT Senescence  map  / EMT_REGULATORS  map

References
PMID:16001073
RAC1B increases the cellular level of ROS, causing an upregulation of Snail and induction of EMT
em_emtc_emtc_re8( EMT Senescence  map ):
RAC1B increases the cellular level of ROS, causing an upregulation of Snail rexpression and induction of EMT
PMID:17563753
Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition.

ROS@Mitochondria

Identifiers
CHEBI:26523

Maps_Modules
HMC:ACTIVATING_INVASION_AND_METASTASIS
 EMT Senescence  map  / EMT_REGULATORS  map

References
PMID:16001073
RAC1B increases the cellular level of ROS, causing an upregulation of Snail and induction of EMT
em_re1604( EMT Senescence  map ):
PMID:20027199
MYC induces senescence through ROS production
em_emtc_emtc_re22( EMT Senescence  map ):
PMID:10048576
The gene expressions of MMP-1, MMP-3, and MMP-9 and gelatinolytic activity of MMP-9 were significantly increased in high ETS-1 expression cells.
Low ETS-1 expression cells could not spread on a vitronectin substratum, and the phosphorylation of focal adhesion kinase was markedly impaired because of the reduced expression of integrin b3
PMID:19208835
TCF8 (ZEB1) regulates cell invasion and migration via MMP1 expression.
TCF8 is likely to be dispensable for endothelial cell motility.
One possible mechanism underlying the increased invasiveness and migration might be the up-regulated digestion of ECMs via TCF8-mediated transcriptional regulation of the gene encoding MMP1.
MMP1 induction during tube formation was significantly enhanced in Matrigel when TCF8 was silenced
PMID:21081489
MiR-200b Regulates Ets-1-associated Genes
Suppression of endogenous miR-200b induced MMP-1 and VEGFR2 expressions
Overexpression of Ets-1 did not completely reverse miR- 200b-associated MMP-1 and VEGFR2 down-regulation.
It indicates that miR-200b, apart from targeting Ets-1, might silence other target proteins involved in transcription of the indicated genes.
PMID:20589835
Our results indicate that MT1-MMP is a direct down-stream target in the Wnt signaling pathway, and that one of the ways accumulated beta-catenin contributes to colorectal carcinogenesis is by transactivating this gene.
MT1-MMP is one target gene of Lef-1/Tcf-4 (Takahashi et al, 2002)
PMID:22439866
c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1.
PMID:9811054
Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts.
PMID:16556862
ROS regulate MMP gene expression and activation of proenzymes. MMP-1, MMP-2, MMP-7, and MMP-9 are activated by ROS through interactions with thiol groups
em_emtc_emtc_re65( EMT Senescence  map ):
PMID:16079281
MMP-9 transcription is activated in response to Snail expression
Oncogenic H-Ras (RasV12) synergistically co-operates with Snail in the induction of MMP-9 transcription and expression.
Phosphorylated Sp-1 is recruited to the MMP-9 promoter following activation of the Erk1/2 pathway
PMID:19564415
The transcription factor FOXO3, negatively regulated by binding to 14-3-3 protein family, induces MMP9 and MMP13 expression.
This explains the role of FOXO3 in promoting tumor invasion.
PMID:8844971
Molecular mechanism of transcriptional activation of human gelatinase B (=MMP9) by proximal promoter. (NFKB)
em_emtc_emtc_re1257( EMT Senescence  map ):
PMID:10833514
Hypoxia increases mitochondrial ROS generation at Complex III, which causes accumulation of HIF-1alpha protein
Mitochondria-derived ROS are both required and sufficient to initiate HIF-1 alpha stabilization during hypoxia.
em_re1550( EMT Senescence  map ):
PMID:8867670
PMID:12379770
PMID:11035067
PMID:2065663
PMID:8603703
PMID:11788351
PMID:8797825
ROS induces NF_kappa_B pathway activation
em_re1583( EMT Senescence  map ):
PMID:23869868
Chemokine receptor CXCR2 is transactivated by p53 and induces p38-mediated cellular senescence
PMID:24954210
PMID:17254968
MAPK3 and MAPK6 induces p38 which induces p16 and p53
em_re1612( EMT Senescence  map ):
ROS induces a DNA damage response
em_re1633( EMT Senescence  map ):
ROS induces MAPK3 and MAPK6 expression

ROS@Mitochondrial Matrix

Identifiers
CHEBI:26523

Maps_Modules
HMC:RESISTING_CELL_DEATH
 Regulated Cell Death  map  / FERROPTOSIS  map

References
PMID:27646922
ROS play a central role in cell signalling as well as in regulation of the main pathways ofapoptosis mediated by mitochondria, death receptors and the endoplasmic reticulum (ER).
rc_re81:( Regulated Cell Death  map ) reactionType:is.a

ROS@Cytosol

Identifiers
CHEBI:26523

Maps_Modules
HMC:RESISTING_CELL_DEATH
 Regulated Cell Death  map  / FERROPTOSIS  map

References
PMID:27646922
ROS play a central role in cell signalling as well as in regulation of the main pathways ofapoptosis mediated by mitochondria, death receptors and the endoplasmic reticulum (ER)
Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles, which can lead to activation of cell death processes such as apoptosis.
rc_re2346( Regulated Cell Death  map ):
PMID:28552631

ROS@Mitochondrial inner membrane

References
rc_re730( Regulated Cell Death  map ):
PMID:20043986
in isolated mitochondria, Ca2+-dependent and ROS-mediated carbonylation of AIF.
carbonylated AIF as a prefered substrate for calpains

ROS@Cytoplasm

Maps_Modules
HMC:EVADING_GROWTH_SUPPRESSORS
 Survival  map  / MAPK  map

References
Reactive oxygen species
su_mpk1_mpk1_re145( Survival  map ):
TRAF2 activation triggers a ROS pulse that causes the dissociation of Trx from ASK1.
PMID:11274345
su_mpk1_mpk1_re144( Survival  map ):
TNF-dependent production of ROS triggers the dissociation of Trx from ASK1.
PMID:12655147
su_mpk1_mpk1_re184( Survival  map ):
TNF-induced ROS cause oxidation and inhibition of DUSP1 and DUSP5.
PMID:15766528


Modifications:
In compartment: Cytoplasm
  1. ROS@Cytoplasm map
In compartment: Cytosol
  1. ROS@Cytosol map
In compartment: Mitochondria
  1. ROS@Mitochondria map
In compartment: Mitochondrial Matrix
  1. ROS@Mitochondrial Matrix map
In compartment: Mitochondrial inner membrane
  1. ROS@Mitochondrial inner membrane map
In compartment: Nucleus
  1. ROS@Nucleus map
Participates in complexes:
    Participates in reactions:
    As Reactant or Product:
    1. Mitochondria dysfunction@Nucleus map map ROS@Nucleus map
    2. Phagocytes@Nucleus map map ROS@Nucleus map
    3. Toxic compounds@Nucleus map map ROS@Nucleus map
    4. ROS@Nucleus map map Lipid peroxides*@Nucleus map
    5. RAC1B*@Nucleus map map ROS@Nucleus map
    6. Hypoxia@Cytosol map map ROS@Mitochondria map
    7. ROS@Mitochondria map map ROS@Nucleus map
    8. ROS@Mitochondria map map HIF1A@Cytosol map
    9. ROS@Mitochondria map map NF-_kappa_B pathway@Cytosol map
    10. MYC@Nucleus map map ROS@Mitochondria map
    11. ROS@Mitochondria map map DNA damage@Nucleus map
    12. ROS@Nucleus map map PARP1 overactivation@Nucleus map
    13. Lipid ROS@Cytosol map map ROS@Cytosol map
    14. ROS@Cytosol map map Ferroptosis@Cytosol map
    15. O_sub_2_endsub__super_-_endsuper_@Cytosol map map ROS@Cytosol map
    16. Fe2+:​PHD*@Cytosol map + ROS@Cytosol map map Fe3+:​PHD*@Cytosol map
    17. AIFM1@Mitochondrial inner membrane map + ROS@Mitochondrial inner membrane map map AIFM1|​don@Mitochondrial inner membrane map
    18. O_sub_2_endsub__super_-_endsuper_@Mitochondrial Matrix map map ROS@Mitochondrial Matrix map
    19. H_sub_2_endsub_O_sub_2_endsub_@Mitochondrial Matrix map map ROS@Mitochondrial Matrix map
    20. hydroxyl@Cytosol map map ROS@Cytosol map
    21. H_sub_2_endsub_O_sub_2_endsub_@Cytosol map map ROS@Cytosol map
    22. O_sub_2_endsub__super_-_endsuper_@Cytosol map map ROS@Cytosol map
    23. bilirubin@Cytosol map + ROS@Cytosol map map biliverdin@Cytosol map
    24. TNFRSF1B:​TRAF2@Plasma Membrane map map ROS@Cytoplasm map
    25. TNFRSF1A:​TRADD:​TRAF2@Plasma Membrane map map ROS@Cytoplasm map
    As Catalyser:
    1. gIntact_DNA*@Nucleus map map gDeaminated_alkylated_mismatched_base*@Nucleus map
    2. gIntact_DNA*@Nucleus map map gGG-NER_DNA_st1*@Nucleus map
    3. gIntact_DNA*@Nucleus map map gDR_DNA_st1*@Nucleus map
    4. gIntact_DNA*@Nucleus map map gOxidized_ring-saturated_hydrolysed_base*@Nucleus map
    5. gCDKN2A@Nucleus map map rp16INK4A*@Nucleus map
    6. gMMP1@Nucleus map map rMMP1@Nucleus map
    7. gMMP2@Nucleus map map rMMP2@Nucleus map
    8. gMMP9@Nucleus map map rMMP9@Nucleus map
    9. rSNAI1@Nucleus map map SNAI1@Nucleus map
    10. gMMP7@Nucleus map map rMMP7@Nucleus map
    11. gMAPK14@Nucleus map map rMAPK14@Nucleus map
    12. gMAPK3@Nucleus map map rMAPK3@Nucleus map
    13. gMAPK6@Nucleus map map rMAPK6@Nucleus map
    14. gMT-DNA*@Mitochondrial Matrix map map Mitochondrial~DNA damage@Mitochondrial Matrix map
    15. NFE2L2@Cytosol map map NFE2L2|​ubi@Cytosol map
    16. ACO2@Mitochondrial Matrix map map ACO2|​oxidized@Mitochondrial Matrix map
    17. MAP3K5:​TXN@Cytoplasm map map MAP3K5@Cytoplasm map + TXN@Cytoplasm map
    18. DUSP1@Nucleus map map DUSP1|​don@Nucleus map
    19. DUSP5@Nucleus map map DUSP5|​don@Nucleus map