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1Institut Curie, Université PSL, F-75005 Paris, France
2INSERM, U900, F-75005 Paris, France
3Mines ParisTech, Université PSL, F-75005 Paris, France
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Abstract
Motivation: Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling path-
ways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly
focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral
microenvironment.

Results: We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based
modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of
cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intra-
cellular regulation obtained from the Boolean model.
Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization
of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on
published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tu-
moral phenotypes.

Availability and implementation: https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.

1 Introduction

Cancer is the top cause of disease burden in the world accord-
ing to the World Health Organization (Mattiuzzi and Lippi
2019). The severity of cancer is greatly increased by the inva-
sion of cancerous cells into their surrounding environment,
through a metastatic process that may end up in the genera-
tion of a secondary cancer seeding (Suhail et al. 2019, Weiss
et al. 2022). Cell invasion is a complex multiscale process that
requires the coordinated action of entities at the cells’ molecu-
lar, cellular, and population level. In addition, cell invasion
depends on the interplay between cells and the extracellular
environment (Wolf et al. 2013): the presence of different types
of collagens and molecules affects the density of the extracel-
lular matrix (ECM). Likewise, the ECM can constrain cellular
invasion (�Cermák et al. 2018, Kim et al. 2018): the ECM stiff-
ness and the availability of oxygen or nutrients impact intra-
cellular mechanisms, and the ECM acts as a repository for a

variety of growth factors (GFs) and matricellular proteins re-
leased upon ECM modification (Hinz 2015). This complex
dynamic system causes a wide array of different invasion
behaviors that have been described in different cancers
(Guzman et al. 2020, Lüönd et al. 2021, Weiss et al. 2022).

Three main invasion modes have been categorized (Friedl
and Wolf 2010, Friedl and Alexander 2011), where cells
move either individually, collectively, or in streams of cells.
Although these terms are arguably arbitrary and their descrip-
tion can be incomplete, notably at the molecular level, they
are useful as they simplify and categorize the literature, and
they facilitate the study of the molecular mechanisms underly-
ing each mode (Friedl and Wolf 2010). Single cell or individ-
ual migration is the invasion mode where cell–cell junctions
have been lost and cells are free to degrade and roam the
ECM (Friedl and Alexander 2011). Depending on the tissue,
this single cell mode can be further described as ameboid,
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where cells have low adhesion force and spherical shapes, or
as mesenchymal, where cells have cytoskeletal protrusions,
adhesion capabilities, and a spindle shape, with elongated
morphologies and proteolytic activity toward ECM sub-
strates. In collective migration, cell–cell adhesions are retained
and cells invade as multicellular groups, requiring a certain
coordination between cell–cell adhesion and migration
(Vilchez Mercedes et al. 2021).

This mode has been identified as more aggressive and with
higher metastatic potential, especially in circulating tumor
cells and breast cancer (Yang et al. 2019b, Lee et al. 2021).
Trail or multicellular streaming migration is a special case of
the single cell invasion mode where individual cells move one
after the other using the same path within the tissue (Friedl
and Wolf 2010). This can be caused by a given chemoattrac-
tant or due to local ECM heterogeneities that allow for a path
of less friction for cells. In this work, we will not detail this
mode of invasion which may be considered as a special case
of single cell migration but remains a subject of discussion. In
all invasion modes, the first step of cellular invasion is the de-
tachment of cells from their neighboring tumor tissue. The
epithelial-to-mesenchymal transition (EMT) is a molecular
program that triggers tumor cell invasion in response to envi-
ronmental signals (Thiery et al. 2009) by detaching cells from
their neighbors (Friedl and Alexander 2011), promoting cell–
matrix adhesion and the formation of protrusion at the cell
membrane (Destaing et al. 2011, Bergman et al. 2014), and
secreting matrix metalloproteases (MMPs) that degrade the
ECM (Ferrari et al. 2019). EMT allows the cell to switch to a
more motile phenotype, losing adhesion to neighboring cells
and promoting invasiveness at the single cell level.

To study the invasion process that spans many time and
spatial scales, multiscale models, such as agent-based model-
ing (ABM), are ideally suited as they consider agents as surro-
gate of cells that move, divide, and die, which facilitates the
specific description of both intracellular, secretory and micro-
environmental behaviors (Metzcar et al. 2019).

ABM is a computational approach that has gained popular-
ity in the field of cancer research over the last decades. It was
applied in a variety of cancer studies, including breast, lung,
and glioma, and used to investigate the efficacy of treatments,
such as chemotherapy (Gong et al. 2017). Some agent-based
studies have focused on describing the effect of the pressure
and the interactions between the agents and the ECM
(Gonçalves and Garcia-Aznar 2021) without considering in-
tracellular pathways. Notable applications of ABM to cancer
invasion (Anderson 2005, 2007, Franssen et al. 2019,
Macfarlane et al. 2019, Macnamara et al. 2020, Sfakianakis
et al. 2020) have underlined how modeling the interactions
between cancer cells and the ECM, to simulate EMT and mi-
gration, is essential for developing new therapies that target
cancer invasion and metastasis. In particular, hybrid models
have emerged as a powerful tool to simulate cancer cell inva-
sion. By combining ABM and gene regulatory networks de-
scribed by partial and ordinary differential equations (Pally
et al. 2019), hybrid models explore the spatial and temporal
dynamics of cancer cell invasion in a more comprehensive
and mechanistic way, highlighting the role of specific genes
and signaling pathways in cancer and providing a tool to
study heterogeneity at cell state and cell phenotype (Jiang
et al. 2005, Deisboeck et al. 2011, Weerasinghe et al. 2019).
However, this type of dynamical models only covers a small
part of the biological mechanisms for two reasons: because of

the computational cost for simulating a high number of varia-
bles and because these models require many parameters that
need to be fitted to experiments (Schwab et al. 2020). One
way to cope with this limitation is to describe the intracellular
regulations with the Boolean formalism, which, although pro-
viding a less detailed description, requires no or very few
parameters.

In this study, we use PhysiBoSS (Letort et al. 2019, Ponce-
de Leon et al. 2022), a software that combines PhysiCell
(Ghaffarizadeh et al. 2018), an ABM framework that integra-
tes interactions between cells and with the microenvironment,
and MaBoSS (Stoll et al. 2012, 2017), a tool that relies on sto-
chastic simulations of Boolean intracellular signaling models.
PhysiBoSS allows for the combined genetic and environmental
perturbations of tumors and inspects their effect at the popu-
lation level, enabling the study of drug treatments and cellular
heterogeneity and their effect on cancer phenotypes.
PhysiBoSS is used to describe a novel model of tumor growth
that combines a description of the signaling pathways that
trigger events leading to an invasive phenotype, focusing on
both single cell and collective features. By varying the parame-
ters of the ABM and various intracellular components, the
model reproduces the different modes of invasion and pro-
vides a tool for the suggestion of potential drug treatments
and genetic perturbations that could block or perturb specific
invasion modes. The model can be used to reproduce multiple
scenarios both from the spatial point of view (changing the
initial cells’ position, the ECM density and organization, or
2D/3D visualization) and from the intracellular point of view
(simulating mutations and initial conditions, as well as giving
the possibility to include a different network as long as the in-
put and output remain the same).

2 Materials and methods
2.1 PhysiBoSS—a multiscale framework combining

Boolean and agent-based models

The model of the different modes of invasion uses PhysiBoSS
to connect two levels of description: one at the level of the in-
dividual cell and one at the level of cell population. PhysiBoSS
allows this multiscale description by combining simulation of
Boolean models using continuous time Markov process (with
MaBoSS), and center-based ABM of physico-chemical cell–
cell and cell–environment interactions (with PhysiCell). The
multiscale model presented here combines an intracellular
gene regulatory network with several signaling pathways and
generic cell-level parameters. The intracellular model repre-
sents interactions often deregulated in cancer: it receives di-
verse stimuli from the environment by activating a membrane
receptor (input) that triggers signaling pathways and molecu-
lar interactions, ultimately leading to different cell responses
through MaBoSS simulations. These cell fates are represented
by phenotypes that, among others, include cell division (by
activating the M-type cyclins), cell death (by cleaving the ef-
fector caspase 3), and EMT (see Supplementary Tables S2
and S3). Some components can be secreted by the cell, re-
leased in the cell environment, which can activate or inacti-
vate the neighboring cells. These cell fates, in turn, affect
different variables and parameters of the agent-based model
and of neighboring cells (Supplementary Section S1 and
Supplementary Figs S1 and S2). For instance, the release of
MMPs will degrade the ECM, and subsequently free some
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proteins that will trigger a new signaling from neighboring
cells.

2.2 The intracellular model

The intracellular model builds upon two published models fo-
cused on the early steps of metastasis (Cohen et al. 2015) and on
EMT process (Selvaggio et al. 2020). The initial model of Cohen
and colleagues was built with two inputs: the “ECMenv,” which
monitored the status of the ECM, and “DNA_damage,” which
considered DNA alterations that trigger death signals. Four ad-
ditional inputs were added to account for the presence of
“Oxygen,” GFs, “TGFbeta,” and the contact with other neigh-
boring cells (as “Neigh”) (Fig. 1). The phenotypes, or outputs of
the model include “CellCycleArrest,” “Apoptosis,” “EMT,”
“ECM_adh” (for cell adhesion), “ECM_degrad” (for cell degra-
dation), “Cell_growth” (for the dynamics of the tumor growth),
and “Cell_freeze” (for cell motility ability). New genes and path-
ways include mechanisms around p63 (Celardo et al. 2014) and
SRC (Moitrier et al. 2019, Shaaya et al. 2020). Genes from the
Hippo pathway and RhoGTPases, such as YAP1 (Hall et al.
2010), focal adhesion kinase (FAK), and RAC1 (Parri and
Chiarugi 2010), were also inserted to link external signals (i.e.
cell–cell contact, stiffness of the ECM, and stress signals) and in-
tracellular regulation. Currently, the model does not include a
mesenchymal to epithelial transition (MET) (Yao et al. 2011,
Hamilton and Rath 2017), and a cell in a mesenchymal cell

cannot revert its state. The resulting network encompasses 45
nodes, with 6 input nodes, representing the possible interactions
of an individual cell with external elements, and 8 output nodes
or read-outs describing the possible observed phenotypes (Fig. 1).
The model is also provided in SIF and SBML formats. The SIF
format can be used to facilitate the network visualization with
Cytoscape (Shaaya et al. 2020) and is analyzed in a Jupyter note-
book available in dedicated GitHub and Supplementary
Material. The SBML format can be accessed on Biomodels
https://www.ebi.ac.uk/biomodels/MODEL2304070002.

2.3 Initial conditions for the simulation of the

intracellular model

The initial conditions of the model were set to represent a
given cell’s position in the tumor: in the center of the tumor
with cells surrounding it (“Oxygen” and GFs are ON), and at
the periphery of the tumor in direct contact with the ECM
(“Oxygen,” GFs, “ECM,” and “TGFbeta” ON with or with-
out “DNAdamage”) (Supplementary Fig. S3). Because of the
contact with the ECM, cells on the surface of the tumor are
more likely to switch from an epithelial to a mesenchymal
state (Tzanakakis et al. 2018), while in the center, they form
tight cell junctions preventing movement. For the inner tumor
cell conditions, the simulation with MaBoSS shows a high
proportion of cells with “Cell_freeze” and “Cell_growth”
phenotypes, corresponding to an increase in the tumor mass

Figure 1. Influence network of the intracellular model, illustrating the intricate interplay between genes, proteins, inputs, and outputs. Rectangular nodes

at the top represent inputs, while rectangular nodes at the bottom depict outputs (or phenotypic read-outs). Notably, the figure reveals the presence of

highly connected nodes, characterized by a high number of incoming and outgoing arrows, highlighting the complexity and interconnectedness of the

pathways involved.
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without signs of invasion. Instead, activation of
“DNA_damage” leads to the activation of the apoptotic path-
way. The pressure due to cell crowding activates the
DNA_damage node, which leads to the secretion of MMPs
and the remodeling and degradation of ECM (Nader et al.
2021). In the absence of DNA damage, a high probability of
cells with the “EMT/Migration/ECM_adh” phenotypes is ob-
served, corresponding to a high invasive potential. This is also
true in the absence of oxygen and GF. The presence of DNA
damage promotes secretion of MMPs. The combination of
the absence of GF and DNA damage leads to an apoptotic
state (see Supplementary Section S3 for MaBoSS simulations).

Different combinations of initial states can be simulated using
our dedicated Jupyter notebook (included as Supplementary
Material) and in the GitHub repository https://github.com/sys
bio-curie/Invasion_model_PhysiBoSS.

2.4 Setup of the agent-based model for the

integration of the intracellular model

At the beginning of the simulation, the tumor is represented
as a spheroid composed of cancer cells in an epithelial state,
surrounded by the ECM. The ECM is defined as a static sub-
strate, i.e. not characterized by a diffusion coefficient and
without any decay, that can be present in any voxel around
the cells, acts as a barrier for the cells by creating a repulsion
force. The oxygen freely diffuses into the microenvironment
toward the center of the spheroid from the border of the simu-
lation box, while TGFbeta is encapsulated into the ECM. In
the model, oxygen is needed for both cellular respiration and
as a trigger for the cells’ motility, and is uptaken by the cells.

It is only when the cells have acquired the appropriate pheno-
type (“ECM_degrad” and “Migration” active) that they can
trigger invasion. Secondly, the ECM contains a certain amount
of TGFbeta, which is released when the cell degrades the ECM
above a threshold. We fitted this threshold to reproduce experi-
mental data, although this parameter does not seem to have a
strong impact the different modes of invasion. When ECM is de-
graded, TGFbeta becomes accessible to the neighboring cells
that initiate its uptake. The presence of oxygen and TGFbeta in
the microenvironment, if above a certain threshold, can trigger
the activation of the corresponding input node (“TGFbeta,”
“Oxy”) in the intracellular model. The ECM input node is trig-
gered when a cell has more contact with the ECM than a user-
defined threshold. This value is stored into the variable ecm_-
contact and is based on the amount of overlap between the cell
and the voxel. The intracellular node “Neigh” is the readout for
cell–cell contact. In order to quantify cellular contact, the dis-
tance between neighboring cells is stored into an environmental
variable cell_contact and corresponds to the percentage of their
overlapping cell radii. This value is compared to cell_cell_con-
tact_threshold thresholds to set “Neigh”’s value. To simulate
DNA damage, we consider the physical stress that the cells at the
border of the tumor have when they are pushed against the
ECM barrier, suffering high nuclear pressure. This pressure is
represented as an overlap (distance) between the nucleus radius
of the agents and the voxel containing the ECM. When this over-
lap reaches a given threshold (DNA_damage_threshold¼0.8), it
triggers the “DNA_damage” node.

Similarly, the outputs (or read-outs) of the intracellular
model are connected to functions inside each agent. The
“Apoptosis” node triggers the apoptotic death model of
PhysiCell. “Migration” changes the direction of the motility of
the cells, from a random walk to a chemotaxis movement

toward the highest concentration of nutrients (represented by
oxygen). As “Migration” is activated, the internal variable of
the cell “pmotility” increases. This parameter modifies the mo-
tility speed (motility_speed), accelerating the cells from 0 until
it reaches the maximum value set in the configuration file.

“EMT” is considered as a necessary early step for cell invasion
that modifies some mechanical aspects of the agent: once acti-
vated, it impacts the padhesion variable that indicates the per-
centage of cell adhesion with neighboring cells. EMT value also
determines whether a cell attaches to neighboring cells or not, a
phenomenon that is characterized by a spring-like adhesion.

The formed attachment is disbanded if: (i) padhesion is be-
low a certain threshold, simulating the lack of cell junctions by
the E-cadherins, or (ii) an external mechanical force causes the
separation of the attachment. The node “ECM_adh” that
accounts for the junction between the cell and the ECM acti-
vates a function that increases the amount of integrins in the
agent (corresponding to the parameter integrins in the model).
The node “ECM_degrad” is monitored by the MMPs, enzymes
that allow the cells to degrade the ECM and hence start inva-
sion. In the model “ECM_degrad” triggers the uptake rate of
ECM substrates based on the amount of integrins displayed by
a cell, reducing the density of the ECM value in the target voxel
and facilitating the cell’s movement through it.

2.5 Role of key model parameters

Some model parameters correspond to biophysical mecha-
nisms that are difficult to infer from experiments. A parame-
ter set is proposed in order to simulate the different invasion
modes, qualitatively reproducing the experimental images in
Section 3. A subset of seven parameters were chosen to per-
form a sensitivity analysis (listed in Table 1) that cause the
simulation to switch from one mode of invasion to another
(Fig. 2).

The cell_ecm_repulsion regulates the force of repulsion between
a cell and the ECM. The parameter epith_cell_attach_threshold
controls the activation threshold that allows cells in the epithelial
state to form tight junctions with the cells around them, and
mes_cell_detach_threshold describes the force needed to break
this bond in mesenchymal cells. The cell_cell_contact_threshold
changes the required distance between a cell and its neighbors to
activate the “Neigh” node and cell_ecm_contact_threshold the
distance between a cell and the ECM to activate the ECM node.
The parameter migration_bias governs the stochasticity of the
movement of mesenchymal cells. The higher its value, the less sto-
chastic the movement is. Finally, the parameter migration_speed
describes the velocity of a mesenchymal cell.

For each parameter, a range of values is selected (Table 1)
and run 50 replicates for each. This number of replicates has
been selected so as to minimize variations of the results for a
reasonable computation time. By varying their value, we are
able to modulate the presence of single cells and cells migrat-
ing in clusters (see Supplementary Section S15).

To quantify the number of cells in clusters or without at-
tachment, we classify each agent based on the proximity of
other cells and the links that exist between them. The infor-
mation is interpreted as a network where nodes are agents
and edges represent the link between two cells. With tools,
such as Cytoscape (Shannon et al. 2003), we can visualize the
network and count the number of single cells, number of clus-
ters, and the number of cells in a cluster. This quantification
is useful when performing parameter sensitivity analyses. For
more details, see Supplementary Section S13.
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3 Results

In order to validate the model, we successfully reproduced ex-
perimental observations reported in two studies: the first one
focuses on the secretion of MMPs through the modification
of p63 (Lodillinsky et al. 2021) and the second one on the lo-
cal activation of SRC, which leads to collective migration
(Moitrier et al. 2019). These applications show how interven-
tions to the intracellular or extracellular mechanisms of the
cell can affect the global behavior of the tumor growth and in-
vasion. The model can then suggest means to interfere with
these behaviors, either by modifying the parameters of the
agent-based model, or by simulating perturbations in the sig-
naling pathway by modifying the intracellular model. In prac-
tice this would be translated experimentally by modifying,
among many things, the density of the matrigel, the adhesive
affinities between cell types or performing gene knockouts to
simulate potential drug targets. An additional example is pro-
vided in Supplementary Section S12 and focuses on the role of
the ECM in the different modes of invasion (Ilina et al. 2020).

3.1 The role of p63/MT1-MMP in tumor invasion

Lodillinsky and colleagues have reported that, in basal-like
breast cancer, the secretion of MT1-MMP and subsequent

cell migration, was strictly linked to the up-regulation of p63
(Lodillinsky et al. 2021). It was shown in this study that the
contact of cells with the ECM increased the level of an iso-
form of p63, Dp63, and as a consequence of MT1-MMP.
Through the inhibition of p63, they noticed a strong decrease
in the MT1-MMP level, thereby decreasing the process of in-
vasion. The overexpression of MT1-MMP instead reestab-
lished the invasive capacity of p63 depleted cells (Fig. 3, top
middle panel). In this example, we modified the intracellular
activity of p63 and observed the consequence at the popula-
tion level. The node “MMPs” of the model accounts for a set
of MMPs consisting of MT1-MMP (MMP14), MMP13, and
MMP2 (Ferrari et al. 2019) and its activity is regulated by
Notch, SMAD, RAC1, p73, and p63 (Supplementary Section
S2). We first simulated the full inhibition of “p63” (setting
the node to 0) in conditions that would activate the migration
process (Oxygen¼1, Growth_factor¼1, Neighbor¼1,
ECM¼1, TGFbeta¼1, DNAdamage¼ 0). In this simulation,
MMPs could not be released, blocking the invasive capacity
of the cells and confining the tumor (Fig. 3, lower panel).
When p63 is over-expressed, and as a consequence MMPs are
over-activated, the cells are able to degrade the ECM, allow-
ing the tumor to expand and grow (Fig. 3) as observed in the

Table 1. List of the seven parameters studied in the sensitivity analysis.a

Parameters Description Range

cell_ecm_repulsion Regulates the amount of repulsion between cell and ECM 0<15<75
epith_cell_attach_threshold Changes the activation threshold needed to attach cells in cluster with cell

junction
0.0<0.05<1

mes_cell_detach_threshold Changes the activation threshold needed to detach cells in cluster with cell
junction

0.0<0.03<1

cell_cell_contact_threshold Changes the activation threshold of the value cell_contact needed to trigger
the Neigh node

0.0<0.3<3.5

cell_ecm_contact_threshold Changes the activation threshold of the value ecm_contact needed to trigger
ECM node

0.0<0.05<1

migration_bias Changes the value of migration bias for cells with Migration node active 0.0<0.8<1
migration_speed Changes the value of migration speed for cells with Migration node active 0.0<0.7<1

a For each parameter, we focused on a range of values, picked several values in it, ran 50 simulations for each parameter set and selected the number in
bold to reproduce the published experiments presented here.

Figure 2. The 3D representation of the simulation. For (A) and (B), different values of the parameters have been used to reproduce single (black arrows)

and collective cell migration (white arrows). More details about the quantification of single and collective migration are given in Supplementary Section

S13. The color bar represents the amount of cell junction used to establish cellular adhesion. (A) cell_ecm_repulsion¼10, epith_cell_junction_attach¼0.5,
mes_cell_junction_detach¼0.03, migration_bias¼0.9, migration_speed¼0.8. (B) cell_ecm_repulsion¼15, cell_junction_attach¼0.005,
cell_junction_detach¼0.001, migration_bias¼0.8, migration_speed¼0.7.
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published experiment. The model was able to mimic experi-
mental observations. We notice that the inhibition of p63
does not block the EMT activation. Here, the cells are still
able to shift to a mesenchymal state, to grow and to divide.
On the other hand, overexpression of p63 in the simulation
promotes ECM degradation but partially blocks EMT transi-
tion and completely blocks Migration, allowing tumor expan-
sion but not single or collective migration as reported in
Lodillinsky et al. (2021).

To further explore this scenario, we searched for an addi-
tional mutation that could stop invasion in the p63/MMPs
overexpression condition. We initially performed a sensitivity
analysis of the intracellular model, which consisted in auto-
matically deleting and overexpressing all the nodes of the net-
work, and selected ERK knockout, which affects the
expression of p21 and the phenotype “Cell_growth,”
“Apoptosis,” and “Migration”. We simulated the p63/MMPs
conditions first, without the mutation, and we then intro-
duced the knockout halfway of the simulation. ERK knockout
caused the triggering of apoptosis in almost all the cells
completely stopping the invasion process. Interestingly, the
knockout of ERK without p63 overexpression only caused a
small percentage of cells to go into apoptosis without stop-
ping the invasion process (Supplementary Section S9). In prac-
tice, targeting ERK might have too many collateral effects,
but this type of simulations highlights how the model can be
used to better understand the processes linked to invasion and
search for means to slow it down or suppress it.

3.2 Simulation of local light activation of the SRC

oncoprotein in an epithelial monolayer

Moitrier et al. used a synthetic light-sensitive version of SRC
to trigger its activity upon light activation (Moitrier et al.
2019). They subjected a monolayer of cells to intermittent
blue light to induce a spatially constrained activation of the

pro-invasive SRC protein and correlated this with the forma-
tion of extruded cells that remain cohesive.

In the intracellular model, SRC regulates the activity of
CTNNB1 and CDH2 (Qi et al. 2006), CDH1 (Selvaggio et al.
2020) and the production of vimentin (Yang et al. 2019a).
SRC is activated by FAK. We used two different setups in 2D
and 3D to simulate this experimental setting. In the 2D sce-
nario (Fig. 4), upon activation of the blue light, the affected
cells start to develop a migratory phenotype similar to that of
cells in contact with the ECM. SRC activation triggers the dis-
gregation of cell junctions and EMT, pushing the cells to mi-
grate toward the source of oxygen. The layer of epithelial
cells surrounding the cells that have acquired the EMT pheno-
type confines them and favors the formation of aggregates
that try to free themselves by pushing these EMT-like cells
outwards, leading to collective migration. Removing the light
source from monolayer reverses the cell’s phenotype. The cells
that went through EMT return in the epithelial state, blocking
the migration process. We then replicate the experiment in 3D
(Supplementary Fig. S11). For this case, the experiment setup
was modified: the ECM was removed to avoid the activation
of the mesenchymal phenotype at the border of the monolayer
and the cells were placed at the bottom of the domain. With
this setup, the cells no longer push against the layer of epithe-
lial cells, but rather migrate vertically forming an extrusion
on top of the monolayer as observed in the original experi-
ment. With the deactivation of the light source, the cells un-
dergo a SRC inhibition, reversing the EMT phenotype and
freezing. The epithelial cells in the simulation keep proliferat-
ing, filling the gap left by the mesenchymal cells.

We extended the study by testing the effect of SRC overex-
pression on the whole tumor. As expected, it caused a burst of
invasion, speeding up the formation of both clusters and mi-
grating single cells.

We also searched for a way to limit or even suppress the
metastatic formation in these conditions. We first tried to stop

Figure 3. Reproduction of the p63 knockin/knockout experiment from Lodillinsky et al. (2021). The color of the ECM (blue gradient) shows its local

density. The initial conditions are the same for both simulations (left panel): Oxygen¼1, Growth_factor¼1, Neighbor¼1, ECM¼1, TGFbeta¼1, and
DNAdamage¼0. In p63 overexpression condition (upper middle panel), the ECM can be degraded with the MMPs ON and shows tumor expansion at the

cell population level. The intracellular model (right upper panel) shows the two phenotypes: ECM_degrad and EMT ON. In p63 knockout condition (lower

middle panel), the MMPs cannot be released leading to the inhibition of the ECM degradation phenotype. The intracellular model (right lower panel)

shows that the cell has undergone EMT but is unable to degrade the ECM, which is interpreted at the population level as tumor confinement. Cell density

analysis confirms that in a condition of p63 overexpression, the area occupied by the tumor increases, decreasing the cell density. On the other hand,

inhibition of p63 decreases the area occupied by the tumor, increasing cell density (Supplementary Section S9 and Supplementary Fig. S7).
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the activation of the “ECM_degradation” phenotype through
a knockout of “p63,” which was insufficient to inhibit MMPs
activation. After a parameter sensitivity analysis, we targeted
the ERK gene. As in the previous example, we introduced an
inhibitory mutation of ERK halfway through the simulation,
which stopped the tumor progression not by promoting apo-
ptosis, but rather by inhibiting the cell movement and cell
cycle.

3.3 Simulation of drug candidates that can block

migration

As already mentioned, in addition to reproducing published
studies, the model can also be used as a tool to explore means to
revert invasive phenotypes or prioritize possible points of inter-
vention and drug treatments with in silico experiments. We
tested possible drug candidates that could block migration in
conditions where cells have already undergone EMT and have
started to invade the surrounding ECM. As a result of a system-
atic search for single and combined drug treatments, we found
that overexpressing the activity of “CTNNB1” (forcing its value
to 1) would not prevent tumor growth but would greatly limit
the invasive capacity (Supplementary Fig. S10). We tested this
hypothesis by introducing an overexpression mutation both at
the beginning and halfway through the simulation. In both
cases, the treatment blocked the invasive capacities of the cells,
preventing the activation of the node MMPs and, as a result,
blocking the ECM degradation process. Identifying drugs that
target CTNNB1 or any of its downstream actuators could have
the potential of limiting invasion. In fact, there have been pro-
posals for targeting CTNNB1 as the main player in the WNT
canonical pathway in breast cancer as with 3,6-dihydroxyfla-
vone in MDA-MB-231 cell line (Anastas and Moon 2013), even
though many unknowns remain (van Schie and van Amerongen
2020). A more extensive list of candidates can be found in the
Jupyter notebook “intercellular_model_analysis” and in
Supplementary Section S10, including miR34, which shows
complete blockade of EMT.

3.4 Sensitivity analysis of the model parameters

The choice for the model parameters linking the environment
and the tumor cells is always a difficult task as it cannot be fit to
known values because most of these parameters are not easily
measurable. We performed a sensitivity analysis on a subset of

seven parameters, as shown in Table 1, that are crucial in deter-
mining the modes of invasion, to investigate their impact on the
results. More details about the sensitivity analysis, including
choice of the values, parameters ranges, and number of repli-
cates, can be found in Supplementary Section S15. The parame-
ter cell_ecm_repulsion controls the repulsion force that the ECM
applies to the cells. For cell_ecm_repulsion¼0, the ECM loses
its confinement property, allowing the tumor to expand evenly
and minimizing invasive behavior. For values higher than 5, the
ECM starts repelling the cells, allowing the triggering of the in-
vasive properties of the cells, but for higher values, it also
increases its confinement capacity, minimizing invasion, and
blocking tumor expansion (Supplementary Fig. S22). This is be-
cause, for low repulsion values, the cells can reach the ECM
voxel more easily and, upon contact, are able to change to a
mesenchymal phenotype before developing cell–cell adhesion
and junction.

Epith_cell_attach_threshold and mes_cell_detach_thres-
hold monitor the process of junction formation between cells.
We varied these two parameters independently. Increasing
epith_cell_attach_threshold from its minimum value of 0
results in an increase in the number of single cells, the total
number of cells in the clusters, and a slight increase in the
number of clusters. The latter reaches a plateau around a
value of 0.2, while the number of single cells and cells in clus-
ters continues to increase. For high values of the parameter,
the number of cells in clusters tends to exceed the number of
single cells (Supplementary Fig. S23).

The analysis of mes_cell_detach_threshold, instead, shows
a robust behavior for values higher than 0.05 and no change
in the rate between single cells and cells in the clusters
(Supplementary Fig. S24).

The range over which to vary the threshold value for cel-
l_ecm_contact_threshold and cell_cell_contact_threshold was
calculated based on the maximum compression reached be-
tween cell/cell and cell/ECM. The analysis of cell_ecm_con-
tact_threshold, which represents the ability of the cell to
detect ECM, shows a slight decrease in the number of single
cells and cells in clusters, while the total number of clusters
remains almost unchanged. For values >0.7, the number of
single cells and cells in clusters decreases significantly, almost
reaching zero for values >0.85 (Supplementary Fig. S26). For
cell_cell_contact_threshold, the model proves to be very

Figure 4. Reproduction of the SRC experiments. (A) Experimental results of SRC activation at different time points from Moitrier et al. (2019). The blue

circle indicates the area of the blue light activation. After 33 h, the light source is removed, reversing the collective extrusion phenotype. (B) Model

simulation in 2D of the SRC experiments. We introduced a substrate that simulates the light in the middle of the epithelial monolayer (blue cells) trapped

in the ECM (grey voxels). The white voxels correspond to space where the ECM has been degraded. The substrate virtually interacts with cells with a

SRC activating mutation. The cells undergo EMT and become mesenchymal (green cells), trying to migrate and forming aggregates. When the substrate

is removed, the mesenchymal cells return epithelials. SRC is found active at the borders of the monolayer in contact with ECM.
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robust, with little impact on the separation of clusters and sin-
gle cells (Supplementary Fig. S25).

Migration_bias controls the tendency of a cell to migrate to-
ward its chemoattractant source, varying from 0 (pure ran-
dom walk) to 1 (pure deterministic movement). Our analysis
reveals that this parameter heavily influences the number of
single cells. For values below 0.45, the number of cells in clus-
ters increases similarly to the number of single cells. For
higher values, the number of single cells grows faster, exceed-
ing the number of cells in clusters and reaching a plateau
around a value of 0.55 (Supplementary Fig. S27).

The analysis of migration_speed reveals that this parameter
has minimal impact on the segregation of clusters and single
cells. When values exceed 0.1, the number of cells in clusters
reaches a plateau. However, the number of single cells contin-
ues to increase until a value of 0.2, after which it stabilizes
around 30. When migration_speed¼0, cells do not move due
to oxygen attraction but rather due to cellular replication-
induced pushing, resulting in homogeneous tumor growth
(Supplementary Fig. S28). In biological terms, we can con-
clude that the more motile a cell is, the less likely it will form
a cluster.

4 Discussion

In this study, we present a multiscale model that combines
spatial cell representation and intracellular signaling to repro-
duce the different modes of cell invasion using PhysiBoSS.
The model proved to be efficient in reproducing in vitro
experiments and simulating different experimental scenarios.
We managed to reproduce two invasion modes: single and
collective, thanks to a combination of phenotypes and me-
chanical interactions with the ECM. This study confirms that
tumor invasion is a complex process that benefits from con-
sidering spatial information, interaction with the microenvi-
ronment and intracellular representation.

One application of this model could be to suggest and an-
ticipate the potential risk of metastasis for patients that have a
combination of mutations. Currently, the model includes a
reasonable number of genes to allow for a fast simulation and
is able to capture the biological differences between the differ-
ent modes of invasion. However, to be more precise in the
model predictions, more genes and pathways could be in-
cluded in the future based on new experiments. The choice of
these pathways could be suggested by identifying differen-
tially expressed genes or molecular signatures for patients
with high metastatic potential (Montagud et al. 2022), ex-
ploring public patient datasets, such as The Cancer Genome
Atlas, data for which clinical data about tumor invasiveness
are provided. In future releases, we also plan to include more
cell types, such as cancer-associated fibroblasts and T-cells, to
represent the role of the immune response. In this setting,
each cell type will have its own intracellular model and would
interact with other cell types according to biologically rele-
vant rules.

The current model has demonstrated its predictive poten-
tial, but it has some limitations. One limitation is that the in-
tracellular model can reproduce the EMT transition, but the
commitment to EMT is final and non-reversible spontane-
ously. The reverse process of MET occurs just as a conse-
quence of mutations or DNA damage, and not as an active
process initiated by the cell itself. The second limitation con-
cerns the difficulty of choosing a proper set of parameters that

can reproduce experimental data. While performing the sensi-
tivity analysis, we mainly ran into two problems: (i) the num-
ber of parameters to analyze for this model is large and
requires many long computations, and (ii) we noted a high
presence of noise in the results, even for a large number of
simulations per parameter (50 runs for each tested value, see
Supplementary Section S15). This adds up to other computa-
tional costs of running PhysiBoSS simulations on a regular
laptop. The 2D simulations can take a couple of minutes, but
3D simulations require at least 1 h. One way to tackle this is-
sue that is currently being investigated is to parallelize further
this simulation by using GPUs (Stack et al. 2021) or multiple
MPI nodes (Saxena et al. 2021).

Another way to address this parameter exploration issue is
to rely on simpler, approximate simulations. For that, we
plan to explore surrogate models and use them to learn sub-
sets of parameters (Preen et al. 2019). More specifically, we
want to train a machine learning algorithm connecting the
inputs (parameter values) and the outputs of PhysiBoSS
model, which will act as a surrogate for further parameter op-
timization. We will compare the output of the surrogate
model with in vitro/in vivo data to find the best combination
of parameters, which will be tested in a relatively small num-
ber of simulations. With sufficiently many new simulations,
the surrogate model will be synchronized with the original
model by re-training to maintain the correspondence between
the two models.

Finally, the multiscale model can be used as an exploratory
and predictive tool to test hypotheses before performing wet
lab experiments. The model is accompanied by the Jupyter
Notebook and the Nanohub Tool to facilitate the reproduc-
ibility of the model results but also to allow users (biologists
and/or modelers) to test additional experiments.
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Ponce-de Leon M, Montagud A, Noël V et al. PhysiBoSS 2.0: a sustain-

able integration of stochastic Boolean and agent-based modelling

frameworks. Syst Biol 2022, bioRxiv 2022.01.06.468363; doi:

https://doi.org/10.1101/2022.01.06.468363.

Preen RJ, Bull L, Adamatzky A et al. Towards an evolvable cancer treat-

ment simulator. Biosystems 2019;182:1–7.
Qi J, Wang J, Romanyuk O et al. Involvement of Src family kinases in

N-cadherin phosphorylation and beta-catenin dissociation during

transendothelial migration of melanoma cells. Mol Biol Cell 2006;

17:1261–72.

Saxena G, Ponce-de Leon M, Montagud A et al. BioFVM-X: an

MPIþOpenMP 3-D simulator for biological systems. In:
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