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Abstract

We use the Litvinov-Maslov correspondence principle to reduce and hybridize networks of biochemical
reactions. We apply this method to a cell cycle oscillator model. The reduced and hybridized model can be
used as a hybrid model for the cell cycle. We also propose a practical recipe for detecting quasi-equilibrium
QE reactions and quasi-steady state QSS species in biochemical models with rational rate functions and
use this recipe for model reduction. Interestingly, the QE/QSS invariant manifold of the smooth model
and the reduced dynamics along this manifold can be put into correspondence to the tropical variety of the
hybridization and to sliding modes along this variety, respectively.
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1 Introduction.

Systems biologists develop biochemical dynamical models of various cellular pro-

cesses such as signalling, metabolism, gene regulation. These models can reproduce

complex spatial and temporal behavior observed in molecular biology experiments.

However, currently available dynamical models are relatively small size abstractions,
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containing only tens of variables, and become ineffective when a comprehensive de-

scription of high throughput data is needed. This modest size results from the

lack of precise information on kinetic parameters of the biochemical reactions on

one hand, and of the limitations of parameter identification methods on the other

hand. Further limitations can result from the combinatorial explosion of interac-

tions among molecules with multiple modifications and interaction sites [4]. In

middle out modeling strategies small models can be justified by saying that one

looks for an optimal level of complexity that captures the salient features of the

phenomenon under study. The ability to choose the relevant details and to omit

the less important ones is part of the art of the modeler. Beyond modeler’s art, the

success of simple models relies on an important property of large dynamical systems.

The dynamics of multiscale, dissipative, large biochemical models, can be reduced

to that of simpler models, that were called dominant subsystems [19,8,6]. Simpli-

fied, dominant subsystems contain less parameters and are more easy to analyze.

The choice of the dominant subsystem depends on the comparison among the time

scales of the large model. Among the conditions leading to dominance and allowing

to generate reduced models, the most important are quasi-equilibrium (QE) and

the quasi-steady state (QSS) approximations [8]. In nonlinear systems, timescales

and together with them dominant subsystems can change during the dynamics and

undergo more or less sharp transitions. The existence of these transitions suggests

that a hybrid, discrete/continous framework is well adapted for the description of

the dynamics of large nonlinear systems with multiple time scales [3,15,16]. The

notion of dominance can be exploited to obtain simpler models from larger mod-

els with multiple separated timescales and to assemble these simpler models into

hybrid models. This notion is asymptotic and a natural mathematical framework

to capture multiple asymptotic relations is the tropical geometry. Motivated by

applications in mathematical physics [10], systems of polynomial equations [24],

etc., tropical geometry uses a change of scale to transform nonlinear systems into

discontinuous piecewise linear systems. The tropicalization is a robust property

of the system, remaining constant for large domains of parameter values; it can

reveal qualitative stable features of the system’s dynamics, such as various types

of attractors. Thus, the use of tropicalization to model large systems in molecular

biology could be a promising solution to the study of systems with imprecise kinetic

parameters. In this paper we propose a method for reduction and hybridization of

biochemical networks. This method, based on tropical geometry, could be used to

automatically produce the simple models that are needed in middle-out approaches

of systems biology.

2 Biochemical networks with rational rate functions.

Systems biology models use chemical kinetics to describe the dynamics of cellular

processes. We consider here that the molecules of various species are present in

sufficient large numbers and that stochastic fluctuations are negligible as a conse-

quence of the law of large numbers and/or of the averaging theorem [3]. We also
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consider that space transport phenomena are sufficiently rapid such that the well

stirred reactor hypothesis is valid. In these conditions, the dynamics of the bio-

chemical system can be described by systems of differential equations. In chemical

kinetics, enzymatic reactions are presented as reduced one-step processes character-

ized by stoichiometry vectors and rate functions. However, each enzymatic reaction

can be decomposed into several steps that define the reaction mechanism. The re-

sulting stoichiometry and global rate depend on the mechanism. Several methods

were designed for calculating effective rates of arbitrarily complex mechanisms. For

single route enzyme reactions King and Altman [9] proposed a graphical method to

compute global rates; these are rational functions of the concentrations (an example

is the Michaelis-Menten equation). Yablovsky and Lazman [13] studied the same

problem for more general mechanisms and found that in this case the reaction rates

are solutions of polynomial equations; these can be solved by radicals in a few num-

ber of cases and can be calculated by multi-variate hypergeometric series in general

[13]. Truncation of these series to finite order leads to rational approximations of

the reaction rates.

In chemical kinetics with rational reaction rates the concentration xi of the i-th

component follows the ordinary differential equation:

dxi
dt

= Pi(x)/Qi(x), (1)

where Pi(x) =
∑

α∈Ai
ai,αx

α, Qi(x) =
∑

β∈Bi
bi,βx

β , are polynomials and we have

1 ≤ i ≤ n. Here xα = xα1
1 xα2

2 . . . xαn
n , xβ = xβ1

1 xβ2
2 . . . xβn

n , ai,α, bi,β , are nonzero

real numbers, and Ai, Bi are finite subsets of Nn called supports of Pi and Qi.

A simple example of model with rational reaction rates is the minimal cell cycle

oscillator model proposed by Tyson [26]. This example will be studied throughout

the paper. The dynamics of this nonlinear model that contains 5 species and 7

reactions is described by a system of 5 polynomial differential equations:

y′1 = k9y2 − k8y1 + k6y3, y′2 = k8y1 − k9y2 − k3y2y5,

y′3 = k′4y4 + k4y4y
2
3/C

2 − k6y3, y
′
4 = −k′4y4 − k4y4y

2
3/C

2 + k3y2y5,

y′5 = k1 − k3y2y5, where y1 + y2 + y3 + y4 = C. (2)

3 Hybridization and tropical geometry.

Tropical geometry is a new branch of algebraic geometry that studies the asymptotic

properties of varieties. While algebraic geometry deals with polynomial functions,

tropical geometry deals with piecewise linear functions with integer directing slopes.

Tropical geometry has a growing number of applications in enumerative problems

in nonlinear equation solving [20], statistics [17], traffic optimization [1].

The logarithmic transformation ui = logxi, 1 ≤ i ≤ n, well known for drawing

graphs on logarithmic paper, plays a central role in tropical geometry [27]. By

abus de langage, here we call logarithmic paper the image of Rn
+ by the logarithmic

transformation, even if n > 2. Monomials M(x) = aαx
α with positive coefficients
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aα > 0, become linear functions, logM = logaα+ < α, log(x) >, by this transfor-

mation. Furthermore, the euclidian distance on the logarithmic paper is a good

measure of separation (see next section).

Litvinov and Maslov [11,10] proposed a heuristic (correspondence principle) al-

lowing to transform mathematical objects (integrals, polynomials) into their quan-

tified (tropical) versions. According to this heuristic, to a polynomial with positive

real coefficients
∑

α∈A aαx
α, where A ⊂ N

n is the support of the polynomial, one

associates the max-plus polynomial maxα∈A{log(aα)+ < log(x), α >}.
We adapt this heuristic to associate a piecewise-smooth hybrid model to the

system of rational ODEs (1).

Definition 3.1 We call tropicalization of the smooth ODE system (1) the following

piecewise-smooth system:

dxi
dt

= siexp[maxα∈Ai{log(|ai,α|)+ < u, α >} −maxβ∈Bi
{log(|bi,β |)+ < u, β >}],

(3)

where u = (logx1, . . . , logxn), si = sign(ai,αmax)sign(bi,βmax) and ai,αmax , αmax ∈
Ai (respectively, bi,βmax , βmax ∈ Bi) denotes the coefficient of a monomial of the

numerator (respectively, of the denominator) for which the maximum occurring in

(3) is attained.

In a different notation this reads:

dxi
dt

= Dom{ai,αxα}α∈Ai/Dom{bi,βxβ}α∈Bi , (4)

where Dom{ai,αxα}α∈Ai = sign(ai,αmax)exp[maxα∈Ai{log(|ai,α|)+ < u, α >}].
Finally, the tropicalization can be written with Heaviside functions:

dxi
dt

=

∑
α∈Ai

ai,αx
α
∏

α′ �=α θ(< α− α′, log(x) > +log(|ai,α|)− log(|ai,α′ |))
∑

β∈Bi
bi,βxβ

∏
β′ �=β θ(< β − β′, log(x) > +log(|bi,β |)− log(|bi,β′ |)) , (5)

where θ(x) = 1 if x > 0, 0 if not. The following definitions are standard and will be

used throughout the paper:

Definition 3.2 The Newton polytope of a polynomial P (x) =
∑

α∈A aαx
α is de-

fined as the convex hull (in R
n) of the support of P , New(P ) = conv(A).

Definition 3.3 The max-plus polynomial P τ (x) = max{log|aα|+ < α, log(x) >}
is called the tropicalization of P (x). The logarithmic function is defined as log(x) :

R
n
+ → R

n, log(x)i = log(xi).

Definition 3.4 The set of points x ∈ R
n where P τ (x) is not smooth is called

tropical variety. Alternative names are used such as logarithmic limit sets, Bergman

fans, Bieri-Groves sets, or non Archimedean amoebas [18].

In two dimensions, a tropical variety is a tropical curve made of several half-

lines (tentacles) and finite intervals [14]. A tropical line corresponds to only three
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monomials and is made of three half lines sharing a common point. The tentacles

and the intervals of the tropical variety are orthogonal to the edges and point to

the interior of the Newton polygon [18] (see Fig.1).

4 Dominance and separation.

The above heuristic is related to the notion of dominance. Actually we have replaced

each polynomial in the rational function by the dominant monomial. Dominance of

monomials has an asymptotic meaning inside cones of the logarithmic paper. For

instance xα dominates xβ on the half plane < log(x), α−β >> 0 of the logarithmic

paper. We have xβ/xα → 0 when the limit is taken along lines in this half plane.

For practical applications, we would also need a finite scale notion of dominance.

Let M1(x) = aα1x
α1 and M2(x) = aα2x

α2 be two monomials. We define the

following binary relations:

Definition 4.1 [Separation] M1 and M2 are separated on a domain D ⊂ Rn
+ at a

level ρ > 0 if |log(|aα1 |xα1)− log(|aα2 |xα2)| > ρ for all x ∈ D.

On logarithmic paper, two monomials are separated on the domain D, if D is

separated by the euclidian distance ρ from the hyperplane < log(x), α1 − α2 >=

log|aα2 | − log|aα1 |.
Definition 4.2 [Dominance] The monomial M1 dominates the monomial M2 at

the level ρ > 0, M1 �ρ M2, if log(|aα1 |xα1) > log(|aα2 |xα2)+ ρ for all x ∈ D ⊂ R
n
+.

Dominance is a partial order relation on the set of multivariate monomials de-

fined on subsets of Rn
+.

5 Dominance and global reduction of large models.

There are two simple methods for model reduction of nonlinear models with mul-

tiple timescales: the quasi-equilibrium (QE) and the quasi-steady state (QSS) ap-

proximations. As discussed in [8], these two approximations are physically and

dynamically distinct. Here we present a method allowing to detect QE reactions

and QSS species. Like in [19], the first step of the method is to detect the ”slaved”

species, i.e. the species that obey quasi-steady state equations. These can be for-

mally defined by introducing the notion of imposed trace. Given the traces x(t)

of all the species, the imposed trace of the i-th species is a real stable root x∗i (t)
of the polynomial equation Pi(x1(t), . . . , xi−1(t), x

∗
i (t), xi+1(t), . . . , xn(t)) = 0 (sta-

bility means that dPi
dxi

< 0 at this root). Eventually, there may be several imposed

traced, because a polynomial equation can have several real roots.

Definition 5.1 We say that a species is slaved if the distance between the traces

xi(t) and some imposed trace x∗i (t) is small on some interval, supt∈I |log(xi(t)) −
log(x∗i (t))| < δ, for some δ > 0 sufficiently small. A species is globally slaved if

I = [T,∞) for some T ≥ 0.
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Slaved species are good candidates for QSS species and this criterion was used

to identify QSS species in [19]. More generally, slaved species are involved in rapid

processes, but are not always QSS. Actually, two distinct cases lead to slaved species.

Quasi-equilibrium. A system with fast, quasi-equilibrium reactions has the fol-

lowing structure [8]:

dx

dt
=

∑

s,slow

Rs(x)γ
s +

1

ε

∑

f,fast

Rf (x)γ
f , (6)

where ε > 0 is a small parameter γs,γf ∈ Z
n are stoichiometric vectors. To separate

slow/fast variables, we have to study the spaces of linear conservation law of the

initial system (6) and of the following fast subsystem:

dx

dt
=

1

ε

∑

f,fast

Rf (x)γ
f . (7)

In general, the system (6) can have several conservation laws. These are linear

functions b1(x), . . . , bm(x) of the concentrations that are constant in time. The

conservation laws of the system (7) provide variables that are constant on the fast

timescale. If they are also conserved by the full dynamics, the system has no slow

variables (variables are either fast or constant). In this case, the dynamics of the

fast variables is simply given by Eq.(7). Suppose now that the system (7) has some

more conservation laws bm+1(x), . . . , bm+l(x), that are not conserved by the full

system (6). Then, these provide the slow variables of the system. The fast variables

are those xi such that (γf )i 	= 0, for some fast reaction f . Let us suppose that

the fast system (7) has a stable steady state that is a solution of the QE equations

(augmented by the conservation laws of the fast system):
∑

f,fast

Rf (x)γ
f = 0, (8)

bi(x) = Ci, 1 ≤ i ≤ m+ l. (9)

By classical singular perturbation methods [25,28] one can show that the fast vari-

ables can be decomposed as xi = x̃i + ηi where x̃i satisfy the QE equations (8) and

ηi = O(ε), meaning that the fast variables xi are slaved [8].

Let us consider that the reaction rates Rs(x), Rf (x) are polynomial functions

of x. Let Pi, P̃i be the polynomials
∑

s,slow Rs(x)γ
s
i + 1

ε

∑
f,fastRf (x)γ

f
i and

∑
f,fastRf (x)γ

f
i , respectively. We call P̃i the pruned version of Pi. When ε is

small enough, the monomials of the pruned version P̃i dominate the monomials of

Pi. The practical recipe for identifying QE reactions is given by the Algorithm 1.

A more general algorithm, applicable to rational rates, will be given elsewhere.

Quasi-steady state. In the most usual version of QSS approximation [23], the

species are split in two groups with concentration vectors xs (“slow” or basic com-

ponents) and xf (“fast” or QSS species). Quasi-steady species (also called radicals

or fast intermediates) are low-concentration, slaved species. Typically, QSS species
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Algorithm 1

Step 1: Detect slaved species by comparing unconstrained and imposed traces.

Step 2: For each Pi corresponding to slaved species, compute the pruned version P̃i

by eliminating all monomials that are dominated by other monomials of Pi.

Step 3: Identify, in the structure of P̃i the rates of various reactions. This step could

be performed by recipes presented in [22]. If both forward and backward rates are

found in the pruned polynomials then the corresponding reaction is QE.

are consumed (rather than produced) by fast reactions. The small parameter ε

used in singular perturbation theory is now the ratio of small concentrations of fast

intermediates to the concentration of other species. After rescaling xs and xf to

order one, the set of kinetic equations reads:

dxs

dt
= W s(xs,xf ), (10)

dxf

dt
= (1/ε)W f (xs,xf ), (11)

where the functions W s, W f and their derivatives are of order one (0 < ε << 1).

Let us suppose that the fast dynamics (11) has a stable steady state. The

standard singular perturbation theory[25,28] provides the QSS algebraic condition

W f (xs,xf ) = 0 which means that fast species xf are slaved. These equations,

together with additional balances for xf (conservation laws) are enough to deduce

the fast variables xf as functions of the slow variables xs and to eliminate them

[29,12,19]. The slow dynamics is given by Eq.(10).

In models with polynomial reaction rates, W f (xs,xf ) are polynomial functions,

that can be pruned by eliminating dominated monomials. Contrary to the QE

situation, in QSS conditions the pruned polynomial P̃i no longer contains both

forward and backward rates of QE reactions, ie the step 3 of Algorithm 1 does

not identify reversible reactions. Alternatively, one can realize that slaved species

can have relatively large concentrations, in which case they are not QSS species.

However, it is difficult to say which concentration value separates QSS from non

QSS species among slaved species, hence the former, dominance criterion is better.

6 Sliding modes of the tropicalization.

A notable phenomenon resulting from tropicalization is the occurrence of sliding

modes. Sliding modes are well known for ordinary differential equations with dis-

continuous vector fields [5]. In such systems, the dynamics can follow discontinuity

hypersurfaces where the vector field is not defined.

The conditions for the existence of sliding modes are generally intricate. How-

ever, when the discontinuity hypersurfaces are smooth and n− 1 dimensional (n is

the dimension of the vector field) then sufficient conditions for sliding modes read:

< n+(x), f+(x) >< 0, < n−(x), f−(x) >< 0, x ∈ Σ, (12)
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where f+, f− are the vector fields on the two sides of Σ and n+ = −n− are the

interior normals.

Let us consider that the smooth system (1) has quasi-steady state species or

quasi-equilibrium reactions. In this case, the fast dynamics reads:

dxi
dt

=
1

ε
P̃i(x)/Q̃i(x), i fast, (13)

where P̃i(x), Q̃i(x) are pruned versions of Pi, Qi, and ε is the small, singular

perturbation parameter.

For sufficiently large times, the fast variables satisfy (to O(ε)):

P̃i(x) = 0, i fast. (14)

The pruned polynomial is usually a fewnomial (contains a small number of

monomials). In particular, let us consider the case when only two monomials remain

after pruning, P̃i(x) = a1x
α1 +a2x

α2 . Then, the equation (14) defines a hyperplane

S = {< log(x), α1 −α2 >= log(|a1|/|a2|)}. This hyperplane belongs to the tropical

variety of P̃i, because it is the place where the monomial xα1 switches to xα2 in

the max-plus polynomial defined by P̃i. For ε small, the QE of QSS conditions

guarantee the existence of an invariant manifold Mε, whose distance to S is O(ε).

Let n+, n− defined as above and let (f+)i =
1

Q̃i(x)
a1x

α1 , (f−)i = 1
Q̃i(x)

a2x
α2 ,

fi = 1
ε [(f+)i + (f−)i] for i fast, (f+)j = (f−)j = fj =

P̃j

Q̃j
, for j not fast. Then,

the stability conditions for the invariant manifold read < n+(x+), f(x+) >< 0,

< n−(x−), f(x−)) >< 0, where x+, x− are close to Mε on the side towards

which points n+ and n−, respectively. We note that |(f+)i(x+)| > |(f−)i(x+)|.
Thus, < n+, f >= 1

ε (n+)i[(f+)i + (f−)i] +
∑

j,notfast(n+)j(f+)j and < n+, f+ >=
1
ε (n+)i(f+)i+

∑
j,notfast(n+)j(f+)j . Thus, if < n+, f >< 0, then for ε small enough

(n+)i(f+)i < 0 and < n+, f+ >< 0 because < n+, f >>< n+, f+ >. Similarly, we

show that < n−, f >< 0 implies < n−, f− >< 0. This proves the following

Theorem 6.1 If the smooth dynamics obeys QE or QSS conditions and if the

pruned polynomial P̃ defining the fast dynamics is a 2-nomial, then the QE or

QSS equations define a hyperplane of the tropical variety of P̃ . The stability of the

QE of QSS manifold implies the existence of a sliding mode of the tropicalization

along this hyperplane.

The converse result, i.e. deducing the stability of the QE/QSS manifold from

the existence of a sliding mode on the tropical variety may be wrong. Indeed, it

is possible for a trajectory of the smooth system to be close to a hyperplane of

the tropical variety carrying a sliding mode and where the QE/QSS equations are

satisfied identically. However, as we will see in the next section, this trajectory can

leave the hyperplane sooner than the sliding mode.
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Fig. 1. (top left) Detection of slaved species by comparing traces to imposed traces: the species y1, y2, y5
are slaved globally, the species y3, y4 are slaved on intervals Q3,Q4, respectively. (top right) Comparison
of monomials of the polynomial systems of quasi-steady state equations. (bottom left) Newton polygons
and inner normals of the reduced two dimensional polynomial model. (bottom right) Phase portrait on
logarithmic paper of the reduced two dimensional model. We represent the two tropical curves (the tripods
graphs, a red and a blue one), the modes (smooth vector fields within domains bordered by tropical curves
tentacles), the smooth and tropicalized limit cycles. The tropicalized cycle contains two sliding modes S3,S4
corresponding to the intervals Q3, Q4 on which y3, y4 are quasi-stationary, respectively.

7 From smooth to hybrid models via reduction.

Starting with the system (2) we first reduce it to a simpler model. The analysis

of the model is performed for the values of parameters from [26], namely k1 =

0.015, k3 = 200, k4 = 180, k′4 = 0.018, k6 = 1, k7 = 0.6, k8 = 1000000, k9 = 1000;

In order to do that we generate one or several traces (trajectories) yi(t). The

smooth system has a stable periodic trace which is a limit cycle attractor. We also
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compute the imposed traces y∗i (t) that are solutions of the equations:

k9y2(t)− k8y
∗
1(t) + k6y3(t) = 0,

k8y1(t)− k9y
∗
2(t)− k3y2(t)y5(t) = 0,

k′4y4(t) + k4y4(t)y
∗2
3 (t)/C2 − k6y

∗
3(t) = 0,

−k′4y
∗
4(t)− k4y

∗
4(t)y

2
3(t)/C

2 + k3y2(t)y5(t) = 0,

k1 − k3y2(t)y
∗
5(t) = 0. (15)

We find that, for three species y1,y2, and y5, the distance between the traces

y∗i (t) and yi(t) is small for all times which means that these species are slaved on

the whole limit cycle (Figure 1 top left). Also, we have a global conservation law

y1 + y2 + y3 + y4 = C, that can be obtained by summing the first four differential

equations in (2). The three quasi-steady state equations for the three slaved species

have to be solved jointly with the global conservation law:

k9y2 − k8y1 + k6y3 = 0,

k8y1 − k9y2 − k3y2y5 = 0,

k1 − k3y2y5 = 0,

y1 + y2 + y3 + y4 = C. (16)

Comparison of the monomials (for values of parameters as above) in this system

shows that max(k8y1, k9y2) � k6y3, and max(k8y1, k9y2) � k3y2y5 (Fig.1 top right)

which leads to the pruned system:

k8y1 − k9y2 = 0,

k8y1 − k9y2 = 0,

k1 − k3y2y5 = 0,

y1 + y2 + y3 + y4 = C. (17)

The first two equations are identical and correspond to quasi-equilibrium of the

reaction between y1 and y2. The third equation means that y5 is a quasi-steady

state species. The pruned system allows the elimination of the variables y1, y2, y5.

The slow variable y12 = y1 + y2 demanded by the quasi-equilibrium condition (this

is a conservation law of the fast system) can be eliminated by using the global

conservation law.

We note that the dominance relations leading to the pruned equations were

found numerically in a neighborhood of the periodic trace. This means that QE

and QSS approximations are valid at least on the limit cycle. More global testing of

these relations will be presented elsewhere. Note that the system (16) can be solved

also without pruning. However, (16) has four independent equations allowing to

eliminate four of the five dynamic variables leading to a one dimensional dynamical

system. It turns out that the correct application of the QE and QSS approximations

has to use (17) and not (16).

After elimination, we obtain the following reduced differential-algebraic dynam-

ical system:
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y′3 = k′4y4 + k4y4y
2
3/C

2 − k6y3,

y′4 = −k′4y4 − k4y4y
2
3/C

2 + k1,

y1 = (C − y3 − y4)k9/(k8 + k9),

y2 = (C − y3 − y4)k8/(k8 + k9),

y5 = k1(k8 + k9)/(k3k8(C − y3 − y4). (18)

Now we tropicalize this reduced system. The tropicalization could have been

done on the initial system in which case the pruned equations (17) would indicate

that the reduced dynamics is a sliding mode of the tropicalized system on the two

dimensional hypersurface k8y1 = k9y2, k1 = k3y2y5, y1+ y2+ y3+ y4 = C. However,

although the result (concerning the dynamics on the QE/QSS manifold) should

be the same, it is much handier to tropicalize the reduced system (18). Indeed,

the tropicalization of the full 5D system is difficult to visualize and would also

produce complex modes that can not be reduced to 2D (these modes describe the

fast relaxation to the QE/QSS manifold).

The resulting hybrid model reads:

y′3 = Dom{k′4y4, k4y4y23/C2,−k6y3},
y′4 = Dom{−k′4y4,−k4y4y

2
3/C

2, k1},
(19)

or equivalently using Heaviside functions:

y′3 = k′4y4θ(−h1 − 2u3)θ(h2 + u4 − u3) +
k4
C2

y4y
2
3θ(h1 + 2u3)θ(h1 + h2 + u4 + u3)

−k6y3θ(−h2 − u4 + u3)θ(−h1 − h2 − u4 − u3),

y′4 = −k′4y4θ(−h3 − 2u3)θ(−h4 + u4)− k4
C2

y4y
2
3θ(h3 + 2u3)θ(h3 − h4 + 2u3 + u4)

k1θ(h4 − u4)θ(−h3 + h4 − 2u3 − u4), (20)

where h1 = h3 = log(k4/(k
′
4C

2)), h2 = log(k′4/k6), h4 = log(k1/k
′
4).

The Newton polygons of the polynomials k′4y4 + k4y4y
2
3/C

2 − k6y3 and −k′4y4 −
k4y4y

2
3/C

2 − k6y3 are triangles (Fig.1 bottom left). The two triangles share a com-

mon edge which is a consequence of the fact that the reduced model have two

reactions each one acting on the two species. The tentacles of the two tropical

curves (in red and blue in Fig.1 bottom right) point in the same directions as the

inner normals to the edges of the Newton polygons (the corresponding equations

are h1 +2u3 = 0, h2 + u4 − u3 = 0, h1 + h2 + u4 + u3 = 0 for one and h3 +2u3 = 0,

h4 + u4 = 0, h3 − h4 + 2u3 + u4 = 0 for the other). These tentacles (half lines)

decompose the positive quarter plane into 6 sectors corresponding to the 6 modes

of the hybrid model.

In Fig.1 bottom right we have also represented the phase portrait of the reduced

model on logarithmic paper. The dynamical variables are u3 = log(y3) and u4 =

log(y4). The vector field corresponding to u′3 = y′3/y3 and u′4 = y′4/y4 was computed

with the dominant monomials in each plane sector as follows:
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u′4 = −k4y
2
3, u

′
3 = −k6 for the mode 1,

u′4 = −k4y
2
3, u

′
3 = k4y3y4 for the mode 2,

u′4 = k1y
−1
4 , u′3 = k4y3y4 for the mode 3,

u′4 = k1y
−1
4 , u′3 = k′4y4y

−1
3 for the mode 4,

u′4 = k1y
−1
4 , u′3 = −k6 for the mode 5,

u′4 = −k′4, u
′
3 = k′4y4y

−1
3 for the mode 6. (21)

Like the smooth system, the tropicalization has a stable periodic trajectory (limit

cycle). This is represented together with the limit cycle trajectory of the smooth

system in Fig.1 bottom right. The period of the tropicalized limit cycle is slightly

changed with respect to the period of the smooth cycle. However, we can modulate

the period of the tropicalized cycle and make it fit the period of the smooth cycle by

acting on the moments of the mode change. This stands to displacing the tentacles

of the tropical varieties parallel to the initial positions or equivalently, to changing

the parameters h1, h2, h3, h4 while keeping h1 = h3 which is a symmetry of the

problem.

The tropicalized system has piecewise smooth hybrid dynamics. Typically, it

passes from one type of smooth dynamics (mode) described by one set of differential

equations to another smooth dynamics (mode) described by another set of differen-

tial equations (the possible modes are listed in Eq.(21)). The command to change

the mode is intrinsic and happens when the trajectory attains the tropical curve.

However, if the sliding mode condition (12) is fulfilled the trajectory continues along

some tropical curve tentacle instead of changing plane sector and evolve according

to one of the interior modes (21). The tropicalized limit cycle has two sliding modes

(S4 and S3 in Fig.1). The first one is along the half-line h3−h4+2u3+u4 = 0 on the

logarithmic paper (tentacle S4 on the red tropical curve in Fig.1). In order to check

(12) we note that f+ = (k1y
−1
4 ,−k6), f

− = (−k4y
2
3,−k6), n

+ = −n− = (−1,−2).

We have a sliding mode if −k1y
−1
4 + 2k6 < 0, meaning that the exit from the

sliding mode occurs when u4 > log(k1/(2k6)). The second sliding mode is along

the tentacle h2 + u4 − u3 = 0 (S3 on the blue tropical curve in Fig.1). We have

f+ = (k1y
−1
4 ,−k6), f

− = (k1y
−1
4 , k′4y4y

−1
3 ), n+ = −n− = (−1, 1). The conditions

(12) are fulfilled when k1y
−1
4 − k′4y4y

−1
3 < 0 which is satisfied on the entire tenta-

cle. The exit from this second mode occurs at the end of the blue tropical curve

tentacle. Interestingly, the sliding modes of the tropicalization can be put into cor-

respondence with places on the smooth limit cycle where the smooth limit cycle

acquires new QSS species. This can be seen in Fig.1 top left. The species y3 be-

comes quasi-stationary on time intervals Q3 that satisfy (with good approximation)

the relation h2+u4−u3 = 0 and correspond to the sliding mode on the blue tropical

curve. Also, the species y4 becomes quasi-stationary on very short time intervals

Q4 that satisfy h3 − h4 + 2u3 + u4 = 0 and correspond to the sliding mode on the

red tropical curve. As pointed out in the preceding section, the trajectories of the

smooth dynamics can evolve close to the tentacles, but leave them sooner than the

sliding modes.

We end this section with a study of the bifurcations of the ODE model and of its
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tropicalization. It is easy to check that there is only one degree of freedom describing

the relative position of the two tropical curves. This is the distance between the

origins of the tropical curves, that is given by the combination k1k
′−1/2
4 k

1/2
4 k−1

6 .

Thus, by changing any one of the parameters k1, k
′
4, k4, k6 we can invert the relative

position of the tropical curves and change the partition of the logarithmic paper

into domains. This leads to two Hopf bifurcations of the ODE model and also two

Hopf bifurcations of the tropicalization. The bifurcation of the tropicalization is

discontinuous (the limit cycle oscillation amplitude does not vanish at bifurcation)

and can also be delayed with respect to the continuous bifurcation of the ODE

model (Fig.2).

Fig. 2. Hopf bifurcations of the smooth and tropicalized system. (left) The relative positions of the tropical

curves can be changed by changing the combination k1k
′−1/2
4 k

1/2
4 k−1

6 . The first Hopf bifurcation corre-

sponds to k1k
′−1/2
4 k

1/2
4 k−1

6 = 1, i.e. log(k1) = −4.61, when the tropical curves intersect in a single point.
For the second Hopf bifurcation the relative position of the two tropical curves is no longer exceptional; the
position of the bifurcation results from sliding modes stability analysis. (right) Amplitudes of oscillation
are shown for the tropicalization (blue) and for the smooth system (red);

8 Solving ordinary differential equations in triangular
form

In order to illustrate the gain that one can obtain from model reduction, we give a

digest of the algorithmic complexity for solving systems of the type (1) and more

generally, an arbitrary system of ordinary differential equations:

Gj(x1, x
(1)
1 , . . . , x

(r)
1 , x2, x

(1)
2 , . . . , x

(r)
2 , . . . , xn, x

(1)
n , . . . , x(r)n , t) = 0, 1 ≤ j ≤ N, (22)

where Gj are differential polynomials of the order at most r in the derivatives x
(s)
i =

∂sxi/∂t
s, s ≤ r. Let the degrees of the differential polynomials Gj do not exceed d.
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Finally, for algorithmic complexity purposes we assume that the coefficients of Gj

are integers with absolute values less than 2l, the latter means that the bit-size of

the coefficients l(Gj) ≤ l.

In [21] an algorithm was designed which works not only for ordinary differential

systems like (22), but even for systems of partial differential equations. For ordinary

systems (22) the algorithm was improved in [7], although still its complexity is rather

big (see below). We describe the ingredients of the output (which has a triangular

form) of the latter improved algorithm and provide for it the complexity bounds.

The algorithm executes the consecutive elimination of the indeterminates

xn, . . . , x1. The algorithm yields a partition P = {Pi}1≤i≤M of the space of the

possible functions x1. Each Pi is given by a system of an equation fi,1(x1, t) = 0 and

an inequality gi,1(x1, t) 	= 0 for suitable differential polynomials fi,1, gi,1. Then the

algorithm yields an equation fi,2(x1, x2, t) = 0 and an inequality gi,2(x1, x2, t) 	= 0

for x2 for suitable differential polynomials fi,2, gi,2. We underline that the latter

equation and inequality hold on Pi. One can treat the system fi,2 = 0, gi,2 	= 0

as the conditions on x2 with the coefficients being some differential polynomials

in x1 (satisfying Pi). Continuing in a similar way, the algorithm produces a tri-

angular system of differential polynomials fi,3(x1, x2, x3, t), gi,3(x1, x2, x3, t), . . . ,

fi,n(x1, . . . , xn, t), gi,n(x1, . . . , xn, t). Thus, at the end xn satisfies (on Pi) the equa-

tion fi,n(x1, . . . , xn, t) = 0 and the inequality gi,n(x1, . . . , xn, t) 	= 0 treated as a

system with the coefficients being differential polynomials in x1, . . . , xn−1.

In other words, suppose that one has a device being able to solve an ordi-

nary differential system f(x) = 0, g(x) 	= 0 in a single indeterminate x. Then the

algorithm would allow one to solve the system (22) consecutively: first produc-

ing x1 satisfying fi,1(x1, t) = 0, gi,1(x1, t) 	= 0, after that producing x2 satisfying

fi,2(x1, x2, t) = 0, gi,2(x1, x2, t) 	= 0 and so on.

This completes the description of the output of the algorithm. Now we turn to

the issue of its complexity. One can bound the orders of the differential polynomials

ord(fi,s), ord(gi,s) ≤ r · 2n := R, 1 ≤ i ≤ M, 1 ≤ s ≤ n, the number of the

elements in the partition and the degrees M, deg(fi,s), deg(gi,s) ≤ (Nd)2
R

:= Q.

Finally, the bit-size of the integer coefficients of fi,s, gi,s and the complexity of the

algorithm can be bounded by a certain polynomial in l, Q. Thus, the number n of

the indeterminates brings the main contribution into the complexity bound, which

is triple exponential in n. Of course, the above bounds have an a priori nature: they

take into the account all the conceivable possibilities in the worst case, whereas in

practical computations considerable simplifications are usually expected.

9 Conclusion

Tropical geometry offers a natural framework to study biochemical networks with

multiple timescales and rational reaction rate functions. First, and probably most

importantly, tropicalization can guide model reduction of ODE systems. We have

shown that the existence of quasi-equilibrium reactions and of quasi-stationary

species implies the existence of sliding modes along the tropical variety. Conversely,
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when the tropicalization has sliding modes along hyperplanes defined by the equality

of two monomials, we propose an algorithm to decide whether the system has quasi-

equilibrium reactions or quasi-equilibrium species. This distinction allows correct

model reduction, and represents an improvement of methods proposed in [19].

The tropicalization represents an abstraction of the ODE model. This abstrac-

tion may be not sound for some dynamic properties, but may conserve others. If the

trajectories of the ODE model are either very far or very close to the tropical vari-

eties, they tend to remain close to the trajectories of the tropicalization for a while.

However, the quality of the approximation is not guaranteed at finite distance from

the tropical variety. For instance, the exit of tropicalized trajectories from a sliding

mode tends to be delayed, and smooth trajectories leave earlier neighborhoods of

tropical varieties. The example studied in this paper also illustrates some properties

of bifurcations of the tropicalization, that we have tested numerically. The tropi-

calization qualitatively preserves the type and stability of attractors, but can also

introduce delays of a Hopf bifurcation. Thus, the tropicalization can only roughly

indicate the position of the bifurcation of the ODE model. Furthermore, close to

the bifurcation, the amplitude of the limit cycle oscillations behaves differently for

the ODE model and for the tropicalization. The two detected Hopf bifurcations are

continuous (the oscillation amplitude vanishes at bifurcation) for the ODE model

and discontinuous (the oscillation amplitude does not vanish at bifurcation) for the

tropicalization.

The tropicalization provides in the same time a reduced model and a ”skeleton”

for the hybrid dynamics of the reduced model. This skeleton, specified by the tropi-

cal varieties, is robust. As a matter of fact, monomials of parameters are generically

well separated [6]. This implies that tropicalized and smooth trajectories are not

that far one from another. Furthermore, because the tropicalized dynamics is ro-

bust, it follows that the system can tolerate large relative changes of the parameters

without strong modifications of its dynamics.

The dynamics of the model studied in this paper is relatively simple: it has

a limit cycle embedded in a two dimensional invariant manifold. As future work

we intend to extend the approach to more complex attractors, such as cycles in

dimension larger than two and chaotic attractors. Methods to compute tropical

varieties in any dimension are well developed in tropical algebraic geometry [2].

Given the tropical variety, the existence of sliding modes can be easily checked

and the pruned polynomials defining the fast dynamics calculated. This should

lead directly to identification of quasi-equilibrium reactions and quasi-stationary

species, without the need of simulation (Step 1 in the Algorithm 1). Proposing

simplified descriptions of the dynamics of large and imprecise systems, tropical

geometry techniques could find a wide range of applications from synthetic biology

design to understanding emerging properties of complex biochemical networks.
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