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Abstract

The study of response to cancer treatments has benefited greatly from the contribution of

different omics data but their interpretation is sometimes difficult. Some mathematical mod-

els based on prior biological knowledge of signaling pathways facilitate this interpretation

but often require fitting of their parameters using perturbation data. We propose a more

qualitative mechanistic approach, based on logical formalism and on the sole mapping and

interpretation of omics data, and able to recover differences in sensitivity to gene inhibition

without model training. This approach is showcased by the study of BRAF inhibition in

patients with melanomas and colorectal cancers who experience significant differences in

sensitivity despite similar omics profiles.

We first gather information from literature and build a logical model summarizing the reg-

ulatory network of the mitogen-activated protein kinase (MAPK) pathway surrounding

BRAF, with factors involved in the BRAF inhibition resistance mechanisms. The relevance

of this model is verified by automatically assessing that it qualitatively reproduces response

or resistance behaviors identified in the literature. Data from over 100 melanoma and colo-

rectal cancer cell lines are then used to validate the model’s ability to explain differences in

sensitivity. This generic model is transformed into personalized cell line-specific logical mod-

els by integrating the omics information of the cell lines as constraints of the model. The use

of mutations alone allows personalized models to correlate significantly with experimental

sensitivities to BRAF inhibition, both from drug and CRISPR targeting, and even better with

the joint use of mutations and RNA, supporting multi-omics mechanistic models. A compari-

son of these untrained models with learning approaches highlights similarities in interpreta-

tion and complementarity depending on the size of the datasets.

This parsimonious pipeline, which can easily be extended to other biological questions,

makes it possible to explore the mechanistic causes of the response to treatment, on an

individualized basis.
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Author summary

We constructed a logical model to study, from a dynamical perspective, the differences

between melanomas and colorectal cancers that share the same BRAF mutations but

exhibit different sensitivities to anti-BRAF treatments. The model was built from the liter-

ature and completed from existing pathway databases. The model encompasses the key

proteins of the MAPK pathway and was made specific to each cancer cell line (100 mela-

noma and colorectal cell lines from public database) using available omics data, including

mutations and RNAseq data. It can simulate the effect of drugs and show high correlation

with experimental results. Moreover, the structure of the network confirms both the

importance of the reactivation of the MAPK pathway through CRAF and the involvement

of PI3K/AKT pathway in the mechanisms of resistance to BRAF inhibition.

The study shows that, because of the low number of samples, the mechanistic approach

that we propose provides different insights than powerful standard machine learning

methodologies would, showing the complementarity between the two approaches. An

important aspect to mention is that the mechanistic approach presented here does not

rely on training datasets but directly interprets and maps data on the model to simulate

drug responses.

Introduction

In the age of high-throughput sequencing technologies, cancer is considered to be a genetic

disease for which driver genes are constantly being discovered [1]. The study of mutational

and molecular patterns in cancer patients aims to improve the understanding of oncogenesis.

However, many of these gene alterations seem to be specific to certain cancer types [2] or

exhibit different behaviors depending on the molecular context, particularly in terms of

response to treatment. This prompted a shift from univariate biomarker-based approaches to

more holistic methodologies leveraging the various omics data available.

To study these observed differences in drug response in various cancers, some approaches

based on mathematical modeling were developed to explore the complexity of differential

drug sensitivities. A number of machine learning-based methods for predicting sensitivities

have been proposed [3], either without particular constraints or with varying degrees of prior

knowledge; but they do not provide a mechanistic understanding of the response. Some other

approaches focused on the description of the processes that might influence the response by

integrating knowledge of the signaling pathways and their mechanisms and translated it into a

mathematical model [4–6]. The first step of this approach implies the construction of a net-

work recapitulating knowledge of the interactions between selected biological entities (driver

genes but also key genes of signaling pathways), extracted from the literature or from public

pathway databases, or directly inferred from data [7]. This static representation of the mecha-

nisms is then translated into a dynamical mathematical model with the goal to not only under-

stand the observed differences [5] but also to predict means to revert unexpected behaviors.

One way to address issues related to patient response to treatments is to fit these mechanis-

tic models to the available data, and to train them on high-throughput cell-line specific pertur-

bation data [4, 5, 8]. These mechanistic models are then easier to interpret with regard to the

main drivers of drug response. They also enable the in silico simulations of new designs such

as combinations of drugs not present in the initial training data [6].

However, these mechanistic models contain many parameters that need to be fitted or

extracted from the literature. Some parsimonious mathematical formalisms have been
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developed to make up for the absence of either rich perturbation data to train the models or

fully quantified kinetic or molecular data to derive the parameters directly from literature. One

of these approaches is the logical modeling, which uses discrete variables governed by logical

rules. Its explicit syntax facilitates the interpretation of mechanisms and drug response [9, 10]

and despite its simplicity, semi-quantitative analyses have already been performed on complex

systems [11] for both cancer applications [9, 12] and drug response studies [13, 14], and have

proved their efficacy [15, 16].

The nature of this formalism has shown its relevance in cases where the model is not auto-

matically trained on data but simply constructed from literature or pathway databases and

where biological experiments focus on a particular cell line [17]. We propose here a pipeline

based on logical modeling and able to go from the formulation of a biological question to the

validation of a mathematical model on pre-clinical data, in this case a set of cell lines (Fig 1),

and the subsequent interpretation of potential resistance mechanisms. The application of the

mechanistic model to different cell lines is therefore done without any training of parameters

but only on the basis of the automatic integration and interpretation of their omic features.

The construction of a mathematical model must be based first and foremost on a precise

and specific biological problem, at the origin of the design of the model. Here, we choose to

explore the different responses to treatments in diverse cancers that bear the same mutation. A

well-studied example of these variations is the BRAF mutation and especially its V600E substi-

tution. BRAF is mutated in 40 to 70% of melanoma tumours and in 10% of colorectal tumours,

each time composed almost entirely of V600E mutations [18]. These tumors have shown poor

responses to standard chemotherapy, prompting particular interest in targeted therapies [18].

In particular, many BRAF inhibitors have been developed such as Dabrafenib, Vemurafenib or

Encorafenib. However, in spite of the molecular similarities between melanoma and colorectal

cancers, BRAF inhibitors have experienced opposite results with improved survival in patients

with melanoma [19] and significant resistance in colorectal cancers [20], suggesting drastic

mechanistic differences.

Some subsequent studies have proposed context-based molecular explanations, often

highlighting surrounding genes or signaling pathways, such as a feedback activation of EGFR

Fig 1. BRAF modeling flowchart: From a biological question to validated personalized logical models.

https://doi.org/10.1371/journal.pcbi.1007900.g001
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[21] or other mechanisms [22, 23]. All in all, several resistance mechanisms have been studied,

pointing to the incomplete suppression of the MAPK pathway following inhibition [24]. These

various findings support the need for an integrative mechanistic model able to formalize and

explain more systematically the differences in drug sensitivities depending on the molecular

context. The purpose of the study we propose here is not to provide a comprehensive molecu-

lar description of the response but to verify that the existence and functionality of the sug-

gested feedback loops around the signaling pathway in which BRAF is involved [21] may be a

first hint towards these differences. For a more thorough study of these cancers, we refer to

other works [4, 25, 26]. The use of BRAF inhibitors in other cancers affected by the BRAV

V600E mutation has also been explored in recent years, highlighting the value of mechanistic

understanding tools to target and support these applications [27] and shed light on the rele-

vance of the new therapeutic options proposed for colorectal cancers in particular [28].

A logical model summarizing the main molecular interactions at work in colorectal cancers

and melanomas is thus built from the literature and completed with databases. As previously

mentioned, the objective is to understand whether it is possible to model and explain differences

in responses to BRAF inhibition in melanoma and colorectal cancer patients using the same

regulatory network. The fact that the two cancers share the same network but differ from the

alterations and expression of their genes constitute our prior hypothesis. We then use model

checking tools to verify the consistency of this model with a series of qualitative assertions

retrieved from literature. Finally, we use available public omics data from these cancer cell lines

to transform the generic model into personalized cell-line models. This step is based on the pre-

viously published PROFILE method and extends it to the interpretation of treatment responses.

The relevance of the personalized models is validated by their ability to recover the differences

in BRAF inhibition sensitivities, from both drug and CRISPR screenings. The study therefore

presents a global approach, from the biological question to the validation of personalized quali-

tative models, which links data and knowledge and integrates in particular two methodological

innovations: a computer-readable model-checking approach for logical models in the MaBoSS

formalism [11], and the interpretation of drug treatments using personalized models.

Materials and methods

Logical model principles and simulations

A concise overview of the main properties of logical modeling is provided and additional

details may be found in dedicated reviews [29, 30]. A logical model can be represented by a

regulatory graph where nodes are biological entities and edges are influences of one entity

onto the others. Each node is considered as a discrete variable (0, 1 or more if required) corre-

sponding to the activity level of the associated biological entity (0 is inactive or absent, 1 is

active or present) (Fig 2A). Each entity (proteins, genes, etc.) can thus represent distinct bio-

logical states (e.g., expressed gene, phosphorylated protein, etc.) depending on the meaning

that is given to each of the nodes. These entities are connected by edges representing positive

(resp. negative) influences, i.e., activation (resp. inhibition) of the target node by the sourced

node. Combinatorial outcome of influences on one node is defined by the logical rules

assigned to the node and expressed with logical operators AND (&), OR (|) and NOT (!), as in

Fig 2A. The dynamics of this mathematical model can be expressed using the state transition

graph (STG) where the nodes of this graph represent the states of the model. In the STG, the

edges show the possible transitions between the different model states according to the logical

rules (Fig 2B). As these rules often allow for different transitions, either all of them can be per-

formed at each time step (synchronous update) or performed sequentially by choosing how

the priorities are defined (asynchronous updates) [29, 30]. In this study, only the asynchronous
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update is considered. For the rest of the article, the term “node” will refer to those of the regu-

latory network.

However, it is necessary to differentiate between the activity of the node and that of the

underlying biological entity. The active state of a node (Node = 1) can correspond to different

Fig 2. Logical modeling principles and personalization. (A) A logical model with three nodes: the regulatory graph, the corresponding logical rules

and the transition rates as used in MaBoSS [31]. (B) Part of the state transition graph with the two possible transitions resulting from the given initial

conditions and the probabilities of choosing stochastically one of them. (C) Schematic representation of a logical model simulation with MaBoSS:

average trajectory obtained from the mean of many individual stochastic trajectories. (D) Personalization with discrete data (e.g., mutations) with some

nodes forced to 0 based on loss of function alteration (left) or 1 based on gain of function/constitutive activation (right). (E) Personalization with

continuous data used to define the initial conditions of nodes and to influence the transitions rates and the subsequent probabilities of transition in

asynchronous update; the graph on the left represents the normalized values of genes A, B and C for patients 1, 2 and N; the right side represents the

personalization of logical model using values from patient N (red profile), first defining the initial probabilities of node activation (middle) and then

influencing the probabilities of transitions from one state to another (right): here, since gene A is highly expressed in the red patient, the probability of

activation of the corresponding node is increased (resp. probability of inhibition is decreased for gene B).

https://doi.org/10.1371/journal.pcbi.1007900.g002
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biological reality: if a node represents a gene, its activation can be interpreted biologically as

the transcription of this gene; for a node representing a protein, its active and inactive states

can be interpreted as the phosphorylated or non-phosphorylated states of the protein. Ideally,

the level of node activation should reflect these different mechanisms and be inferred from the

most appropriate data types. Here, in order to integrate data directly into logical models, we

vary the speed of the reactions according to the data from the patients or cell lines as described

below.

In the present article, all simulations are performed according to asynchronous updating

with MaBoSS software [11, 31]. This algorithm, using continuous time Markov chain simula-

tions on the Boolean network, provides a stochastic way to choose a specific transition among

several possible ones. Each node is associated with transition rates, either for activation of the

node k0!1 (or kup) or inactivation k1!0 (or kdown) and the stochastic choice between the possi-

ble transitions is made based on these transition rates (Fig 2B). For our simulations, unless

otherwise specified (cf. section about personalization of models), all transition states were ini-

tially assigned to 1. The exploration of all the state space of the model is then done by simulat-

ing a very large number of individual stochastic trajectories in order to aggregate them into a

mean stochastic trajectory (Fig 2C). Each node is assigned a continuous initial value, between

0 and 1, which represents its probability of being initiated at 1 among all the simulated trajec-

tories. In the absence of a more precise specification, the nodes are initiated at 0.5 and thus

start randomly in active or inactive positions. To ensure a proper exploration of the state

space, the number of computed stochastic trajectories should increase with the model

complexity.

Automatized model-checking within unit-testing framework

The construction of a model is a daunting task, as each improvement is susceptible to change

the dynamical properties of the model. To tackle this problem, we need a simple way to test

these properties and detect if the model is still able to reproduce them. Software develop-

ment knows similar challenges, where improvements can break existing functionalities. Soft-

ware verification thus became an important part of software development, which assess

whether a software meets a list of requirements. After each important modification, tests are

run to verify that the software still produces the expected behavior. A similar framework can

be applied for model construction to check the validity of the model for each iteration of the

building process. First, the modeller must describe what is the expected behavior of the

model for several conditions, based either on scientific literature or biological experiments.

Some similar works using model checking to build and verify models, were recently pub-

lished [32, 33].

In order to standardize this process, we developed a tool, called MaBoSS_test, to easily ver-

ify if a logical model was coherent with specific biological assertions. This tool is based on

MaBoSS simulation software, which produces simulations describing the evolution of the

probability of states with time. Inspired from python’s unittest library, we developed an exten-

sion for MaBoSS simulations which tests the validity of the dynamical behavior of the model

via assert methods. Each assertion is used to verify if the model satisfies a given type of biologi-

cal statement.

The majority of the tests consist in altering the model, by changing the initial condition or

introducing a set of modifications (e.g. inhibition or overactivation of a node), then observing

how these alterations affect the probability of reaching a specific state with respect to the origi-

nal simulation. An example of a biological assertion may be the reactivation of the MAPK

(mitogen-activated protein kinase) pathway through EGFR signal after BRAF inhibition in
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colorectal cancer [21]. To test if our model is consistent with this statement, we call the func-

tion:

:assertStateProbabilityðfBRAF : OFFg; IC CRC; fEGFR : 1g; “increase”Þ ð1Þ

The arguments of this method are the following: the set of mutations to perform (BRAF:

OFF), the predefined initial conditions of the simulation (IC_CRC), the state we wish to

observe (EGFR:1), and a string to specify the behavior (increase). The function can be read as:

“Assert that: after BRAF inhibition, using the initial condition for the colorectal cancer,

IC_CRC, the probability of EGFR activation increases”. If the “unit testing output” is selected,

in the case that the assertion is not correct, the test will fail raising an exception. Otherwise, if

the “detailed output” is selected, the result will be “True” or “False” and the probabilities to

have EGFR active before and after BRAF inhibition will be displayed. This tool, its documenta-

tion and an example in the form of a Jupyter notebook are available on GitHub (https://

github.com/sysbio-curie/MaBoSS_test).

Cell lines omics profiles

The omics profiles of colorectal and melanoma cell lines are downloaded from Cell Model

Passports portal [34]. 64 colorectal cancer (CRC) cell lines and 65 cutaneaous melanoma (CM)

cell lines are listed in the database, with at least mutation or RNA-seq data (59 CM and 53

CRC with both mutations and RNA-seq data).

Personalization of logical models with cell lines omics data

The PROFILE (PeRsonalization OF logIcaL ModEls) methodology transforms a generic logi-

cal model into as many personalized models as there are cell lines by using and integrating

their omics profiles [35]. The general idea is to rely on the interpretation of the omics data and

translate it into constraints of the mathematical model.

The method to integrate omics data are separated into two strategies: for discrete data (i.e.,

mutations, copy number alterations) and for continuous data (i.e., transcriptomics, (phospho)

proteomics). The discrete strategy consists in setting the value of a node to 0 or 1 for the whole

duration of the simulation. In the present work, this is done based on mutation data and func-

tional effect inference. The mutations identified in the cell lines are interpreted using OncoKB

database [36], an evidence-based repository with mutation annotations. Mutations referenced

as loss-of-function (resp. gain-of function) are forced to 0 (resp. 1), thus constraining the pos-

sible transitions in the model as in Fig 2D, left (resp. right). Uninterpreted mutations, which

are by far the majority, are not included in the models. The distribution of mutations in the

four most frequently mutated genes is shown in Fig 3A.

The second strategy, preferably used with continuous data, is to modify the initial condi-

tions and transition rates based on a continuous proxy for node activity. A cell line with a clear

over-expression of a gene/protein, compared to the whole cohort of interest, will have the tran-

sition rate related to the activation (resp. inhibition) of the corresponding node favoured and

made more (resp. less) likely (Fig 2E). The initial probability that the node will be activated

(i.e., the probability to start at 1 among the 5000 stochastic trajectories) will also be modified

accordingly, which is particularly important for input nodes that will not be regulated by the

model. In the absence of a specification, these nodes remain randomly fixed in active or inac-

tive position at the beginning of the simulation (initial condition 0.5). This method requires

different conditions. First, a relevant node activity proxy has to be available in the data: it can

be a level from transcriptomics, proteomics or even phospho-proteomics. Then, unlike muta-

tions, the interpretation is not made absolutely but only in comparison to the other members
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of the cohort. In the present work, despite the proteic nature of most of the model nodes, RNA

data will be used to perform continuous personalization and this for several reasons. First of

all, RNA data are more frequently available in different databases, including GDSC, and offer a

better coverage of the model nodes than RPPA data, which are often only available for a frac-

tion of the nodes. Interpretation of the same RPPA data, especially on phosphosites, is difficult

and may require adaptation of the method at each node. Although it is an imperfect proxy of

pathway activity, RNA has already been used in modeling approaches [38, 39]. Note that the

distribution of RNA levels is normalized between 0 and 1 on a gene-specific basis before being

included in the model.

This method therefore consists of integrating patient data into a logical model with a pre-

determined structure in order to impose patient-specific constraints on it. The parameters of

the model are therefore not optimized on the basis of an objective function and the quantita-

tive treatment response data are not used in the process. Only generic mechanistic knowledge,

not specific to individual cell lines, has been used beforehand in the model construction and

model-checking steps.

Drug and CRISPR/Cas9 screening

In order to validate the relevance of personalized models to explain differential sensitivities to

drugs, some experimental screening datasets are used. Drug screening data are downloaded

from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset [40] which includes two

BRAF inhibitors: PLX-4720 and Dabrafenib. The cell lines are treated with increasing concen-

tration of drugs and the viability of the cell line relative to untreated control is measured. The

dose-response relative viability curve is fitted and then used to compute the half maximal

inhibitory concentration (IC50) and the area under the dose-response curve (AUC) [41].

Since the IC50 values are often extrapolated outside the concentration range actually tested,

we will focus on the AUC metric for all validation with drug screening data. AUC is a value

between 0 and 1: values close to 1 mean that the relative viability has not been decreased, and

lower values correspond to increased sensitivity to inhibitions. The results obtained with the

two drugs are very strongly correlated (Pearson correlation of 0.91) and the analyses presented

here will therefore focus on only one of them, PLX-4720.

Fig 3. Cell lines data: Mutations and sensitivities to BRAF inhibition. (A) Distribution of the assigned mutations in the four most frequently mutated

genes in the colorectal/melanoma cohort of cell lines [37]. (B) Differential sensitivities to BRAF inhibition by the drug PLX-4720 (upper panel) or by

CRISPR inhibition (lower panel), depending on BRAF mutational status and cancer type. Numbers of cell lines in each category are indicated. Note that

high sensitivities correspond to low AUC and high scaled Bayesian factors.

https://doi.org/10.1371/journal.pcbi.1007900.g003
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Results of CRISPR/Cas9 screening are downloaded from Cell Model Passports [34]. Two

different datasets from Sanger Institute [42] and Broad Institute [43] are available. We use

scaled Bayesian factors to assess the effect of CRISPR targeting of genes. These scores are com-

puted based on the fold change distribution of sgRNA [44]. The highest values indicate that

the targeted gene is essential to the cell fitness. The agreement between the two databases is

good [45] but we choose to focus on the Broad database, which is more balanced in terms of

the relative proportions of melanomas and colorectal cancers.

Fig 3B illustrates both the relative quantities of cell lines for which drug or CRISPR screen-

ing data are available (depending on their BRAF status) as well as differences in sensitivity to

BRAF inhibition. Concerning inhibition by the drug PLX-4720, a non-significant difference

(p = 0.056) in sensitivity between melanomas and colorectal cancers, in favor of the former, is

observed for BRAF mutated cell lines (Fig 3B, upper left panel), in line with the clinical

description of the differences mentioned in the introduction. However, no difference is appar-

ent for non-mutated BRAF cell lines (Fig 3B, upper right panel). Concerning BRAF inhibition

by CRISPR, a difference in sensitivity is on the contrary observed in non-mutated BRAF,

where melanomas appear to be more sensitive than colorectal cancers (Fig 3B, lower right

panel); this difference is not visible in BRAF-mutated cell lines (Fig 3B, lower left panel). The

statistical value of all these comparisons is nevertheless weakened by the small sample sizes,

especially for CRISPR inhibition of BRAF-mutated colorectal cancers. For all types of cancers,

BRAF-mutated cell lines are more sensitive to BRAF inhibition, but with a certain

heterogeneity.

Validation of personalized models using CRISPR/Cas9 and drug screening

The validation of personalized logical models using these screening data is done with the fol-

lowing rationale. First, the models are personalized using omics data from the cell lines. Then,

two separate simulations are performed for each personalized model, with and without the

inhibition. The first is done by creating a new node representing the BRAF inhibitor and mod-

ifying the logical rule associated with the BRAF node: when the inhibitor is activated, the

BRAF logical rule can no longer be satisfied and the node BRAF is therefore permanently deac-

tivated. The ratio of the Proliferation phenotype obtained with inhibition and without inhibi-

tion is the proxy used to be compared with the different screening metrics each of which is

also standardized (AUC calculated on relative viability for drugs and Bayes factor computed

from fold-changes and then scaled).

Random forests

Random forests are used as an example of a machine learning approach to compare with

mechanistic models [46] and are implemented with randomForestSRC R package. Random

forests can be seen as an aggregation of decision trees, each trained on a different training set

formed by uniform sampling with replacement of the original cohort. Prediction performances

are computed using out-of-the bag estimates for each individual (i.e., average estimate from

trees that did not contain the individual in their bootstrap training sample) and summarized

as percentage of variance explained by the random forest. It is also possible to compute the var-

iable importance that assesses the contribution of variables to the overall performance. The

solution adopted in this paper to measure it, and called VIMP in the package, consists in intro-

ducing random permutations between individuals for the values of a variable and quantifying

the variation in performance resulting from this addition of noise. In the case of key variables

for prediction, this perturbation will decrease the performance and will result in a high variable

importance [47].
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Results

A generic logical model for melanoma and colorectal cancers

The construction of the logical model aims at summarizing the current molecular understand-

ing of BRAF gene and its molecular partners in both colorectal cancers and melanomas. The

focus of this model is put on two important signaling pathways involved in the mechanisms of

resistance to BRAF inhibition which are the ERK1/2 MAPK and PI3K/AKT pathways [48, 49].

The MAPK pathway encompasses three families of protein kinases: RAF, MEK, ERK. If

RAF is separated into two isoforms, CRAF and BRAF, the other two families MEK and ERK

are represented by a single node. When BRAF is inhibited, ERK can still be activated through

CRAF, and BRAF binds to and phosphorylates MEK1 and MEK2 more efficiently than CRAF

[50], especially in his V600E/K mutated form. When PI3K/AKT pathway is activated, through

the presence of the HGF (Hepatocyte Growth Factors), EGF (Epidermal Growth Factors) and

FGF (Fibroblast Growth Factors) ligands, it leads to a proliferative phenotype. The activation

of this pathway results in the activation of PDPK1 and mTOR, both able to phosphorylate p70

(RPS6KB1) which then promotes cell proliferation and growth [51]. There has been some evi-

dence of negative regulations of these two pathways carried out by ERK itself [52]: phosphory-

lated ERK is able to prevent the SOS-GRB2 complex formation through the activation of SPRY

[53], inhibit the EGF-dependent GAB1/PI3K association [54] and down-regulate EGFR signal

through phosphorylation [52]. The model also accounts for a negative regulation of prolifera-

tion through a pathway involving p53 activation in response to DNA damage (represented by

ATM); p53 hinders proliferation through the activation of both PTEN, a PI3K inhibitor, and

p21 (CDKN1A) responsible for cell cycle arrest.

The generic network presented in Fig 4 recapitulates the known interactions between the

biological entities of the network. The network was first built from the literature, and then was

verified and completed with potential missing connections using SIGNOR database [55].

More details about the model can be found in the GINsim annotation file of the model [56],

available in Supporting Information. A node representing Proliferation is also defined from

ERK, p70 and p21. It is a coarse-grained representation of the model phenotype that can be

compared with experimental data. It was also used to estimate some MaBoSS simulation

parameters of the model. For instance, in the present work, all simulations have been per-

formed with 5000 trajectories after verifying that this number was sufficient to ensure very low

variability in the final results: 100 different simulations of the generic model, with 5000 trajec-

tories each, result in an average Proliferation score of 0.182 with a standard deviation of 0.005

across the 100 simulations. The scores obtained after each simulation correspond to the final

asymptotic states, i.e., the average stochastic state reached by the model after a defined period

of time. tend = 50 was chosen because at this time, it was ensured that the solutions had reached

their asymptotic state by comparing with values reached at later times (average Proliferation
score of 0.182 also at tend = 100 with 100 simulations of 5000 trajectories). The behavior of

other nodes such as MEK or AKT, located further upstream, was checked in the same way.

We hypothesize that a single network is able to discriminate between melanoma and CRC

cells. These differences may come from different sources. One of them is linked to the negative

feedback loop from ERK to EGFR. As mentioned previously, this feedback leads to one impor-

tant difference in response to treatment between melanoma and CRC: BRAF(V600E) inhibition

causes a rapid feedback activation of EGFR, which supports continued proliferation. This feed-

back is observed only in colorectal since melanoma cells express low levels of EGFR and are

therefore not subject to this reactivation [21]. Moreover, phosphorylation of SOX10 by ERK

inhibits its transcription activity towards multiple target genes by interfering with the sumoy-

lation of SOX10 at K55, which is essential for its transcriptional activity [57]. The absence of
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ERK releases the activity of SOX10, which is necessary and sufficient for FOXD3 induction.

FOXD3 is then able to directly activate the expression of ERBB3 at the transcriptional level,

enhancing the responsiveness of melanoma cells to NRG1 (the ligand for ERBB3), and thus

leading to the reactivation of both MAPK and PI3K/AKT pathways [57]. Furthermore, it has

been shown that in colorectal cells, FOXD3 inhibits EGFR signal in vitro [58]. Interestingly,

SOX10 is highly expressed in melanoma cell lines when compared to other cancer cells. In the

model, we define SOX10 as an input because of the lack of information about the regulatory

mechanisms controlling its activity. The different expression levels of SOX10 have been

reported to play an important role in melanoma (high expression) and colorectal (low expres-

sion) cell lines.

The features and expected behaviors for both cancers were formulated as assertions of the

model and verified at each step of the model construction (Table 1) through the automatized

model-checking framework described in Methods. The tool enables to easily extend the model

with new components, while ensuring that the constraints on which the model was built are

maintained.

The logical model formalizes the knowledge compiled from different sources. It highlights

the role of SOX10, FOXD3, CRAF, PI3K, PTEN and of EGFR in resistance to anti-BRAF treat-

ments. The purpose here is not to suggest new pathways that may be responsible for resistance

but to formally confirm what has been suggested and support hand-waving explanations with

a mathematical model. The model can be further used to simulate drug experiments and sug-

gest conditions for which the treatment may be efficient or not. Adapting the generic model to

each cancer type or cancer cell line will allow to search for the samples that do not respond to

Fig 4. Logical model of signaling pathways around BRAF in colorectal and melanoma cancers. Grey nodes represent input nodes, which may

correspond to the environmental conditions. Blue nodes accounts for families. Light blue node represents the output of the model. Square nodes

represent multi-valued variable (MEK, ERK, p70 and Proliferation). Note that Proliferation is used as the phenotypic read-out of the model.

https://doi.org/10.1371/journal.pcbi.1007900.g004
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treatment, suggest the possible reasons for this resistance, but still focusing on the model com-

ponents (S1 Fig).

Differential sensitivities to BRAF targeting explained by personalized

logical models

Once the logical model consistency has been validated, personalized models are generated for

each cell line by integrating their interpreted genomic features directly as model constraints or

parameters. Their sensitivity to BRAF inhibition is then compared to experimentally observed

sensitivities (Fig 5). In all the following analyses, we focus on three different personalization

strategies using: only mutations as discrete personalization (Fig 5A, upper row), only RNA as

continuous personalization (Fig 5A, middle row) or mutations combined with RNA (Fig 5A,

lower row). These choices reflect an interpretation of biological reality: mutations are much

more drastic and permanent changes than RNA, whose expression levels are more subject to

fluctuation and regulation. The objective is also to answer the following questions: What type

of data is most likely to explain the differences in responses? Is it relevant to combine them?

Fig 5 shows an example of the type of analyses possible with personalized models, zooming in

more and more on the details from Fig 5A to 5C.

The first approach consists in using only mutations as discrete personalization (Fig 5A,

upper row): the mutations identified in the dataset and that are present in the regulatory net-

work are set to 1 for activating mutations and set to 0 for inactivating mutations. In this case,

the Proliferation scores from personalized models significantly correlate with both BRAF drug

inhibitors (PLX-4720 and Dabrafenib) and both CRISPR datasets (using Pearson correlations).

Note that the opposite directions of the correlations for the drug and CRISPR datasets are due

to the fact that cell lines sensitive to BRAF inhibition result in low AUCs, and high scaled

Bayesian factors, respectively, and, if the models are relevant, to low standardized Proliferation
scores. Looking more closely at the corresponding scatter plot for PLX-4720 (Fig 5B, upper left

panel), it can be seen that this correlation results from the model’s ability to recover the highest

sensitivity of the BRAF-mutated cell lines that form an undifferentiated cluster on the left side.

These cell lines are indeed relatively more sensitive than non-mutated BRAF cell lines. How-

ever, the integration of mutations alone does not explain the significant differences within this

Table 1. List of assertions used to validate the logical model.

Assertions Refs

1: BRAF inhibition causes a feedback activation of EGFR in colorectal cancer and not in melanoma. [21]

2:MEK inhibition stops ERK signal but activates the PI3K/Akt pathway and increases the activity of
ERBB3.

[52, 59]

3: HGF signal leads to the reactivation of the MAPK and PI3K/AKT pathways, and resistance to BRAF
inhibition.

[60]

4: BRAF inhibition in melanoma activates the SOX10/FOXD3/ERBB3 axis, which mediates resistance
through the activation of the PI3K/AKT pathway.

[57]

5: Overexpression/mutation of CRAF results in constitutive activation of ERK and MEK also in the presence
of a BRAF inhibitor.

[61]

[62]

6: Early resistance to BRAF inhibition may be observed in case of PTEN loss, or mutations in PI3K or AKT. [61]

7: Experiments in melanoma cell lines support combined treatment with BRAF/MEK + PI3K/AKT
inhibitors to overcome resistance.

[61]

8: BRAF inhibition (Vemurafenib) leads to the induction of PI3K/AKT pathway and inhibition of EGFR did
not block this induction.

[63]

9: Induction of PI3K/AKT pathway signaling has been associated with decreased sensitivity to MAPK
inhibition.

[63]

https://doi.org/10.1371/journal.pcbi.1007900.t001
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Fig 5. Validation of personalized models with cell lines data. (A) Pearson correlations between normalized Proliferation
scores from personalized models and experimental sensitivities to BRAF inhibition by drug or CRISPR targeting; each row

corresponds to a different personalization strategy; only the values for the significant correlations are displayed. (B) Scatter plots

with non-overlapping points corresponding to correlations of panel A, with the three personalization strategies, focusing one

one drug (PLX-4720) and one CRISPR dataset (Broad) only. (C) Enlargement of the scatter plot comparing model scores

(personalized with mutations and RNA) and experimental sensitivity to CRISPR targeting of BRAF (left) with the

corresponding table representing the omics profiles used for each cell line to explore the response mechanisms. This panel can

be advantageously replaced by one of the interactive plots proposed in the provided code.

https://doi.org/10.1371/journal.pcbi.1007900.g005
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subgroup (AUC between 0.55 and 0.9). A very similar behavior can be observed when compar-

ing model simulations with CRISPR data (Fig 5B, upper right panel).

Using only RNA data as continuous personalization (Fig 5A and 5B, middle rows) is both

less informative and more difficult to interpret. For continuous data such as RNAseq data, we

normalize the expression values, following the rules described in Methods section and in [35],

and set both the initial conditions and the transition rates of the model variables to the corre-

sponding values. Correlations with experimental BRAF inhibitions appear weaker and more

uncertain.

The key point, however, is that the combination of mutations and RNA, as depicted in Fig

5A and 5B lower rows, seems to be more relevant. This is partially true in quantitative terms,

looking at the correlation in Fig 5 but it is even easier to interpret in the corresponding scatter

plots. Comparing first the Broad CRISPR scatter plots using mutations only (Fig 5B, upper

right) and using both mutations and RNA (Fig 5B, lower right), we can observe that non-

responsive cell lines (scaled Bayesian factor below 0), grouped in the lower right corner and

correctly predicted using only mutations stayed in the same area: these strong mutational phe-

notypes have not been displaced by the addition of RNA data. Other cell lines previously con-

sidered to be of intermediate sensitivity by the model (e.g., COLO-678 or SK-MEL-2) were

shifted to the right, consistent with the lack of sensitivity observed experimentally. Finally,

BRAF-mutated cell lines, previously clustered in one single column on the left using only

mutations (with normalized Proliferation scores around 0.5), have been moved in different

directions. Many of the most sensitive cell lines (scaled Bayesian factor above 2) have been

pushed to the left in accordance with the high sensitivities observed experimentally (e.g., HT-

29 or SK-MEL-24). It is even observed that the model corrected the position of the two BRAF

mutated cell lines, but whose sensitivity is experimentally low (melanoma cell line HT-144 and

colorectal cell line HT-55). Only one cell line (SK-MEL-30) has seen its positioning evolve

counter-intuitively as a result of the addition of RNA in the personalization strategy: relatively

sensitive to the inhibition of BRAF, it has, however, seen its standardised Proliferation score

approach 1. All in all, this contribution of RNA data results in significant correlations even

when restricted to BRAF-mutated cell lines only (R = 0.69, p.value = 0.006).

A similar analysis can be made of the impact of adding RNA data to personalization when

comparing with the experimental response to PLX-4720 (Fig 5B, upper and lower left panels).

Most of the non-sensitive cell lines (upper right corner) have not seen the behavior of the per-

sonalized models change with RNA addition. However, the numerous BRAF-mutated cell

lines previously grouped around standardized Proliferation scores of 0.5, are now better differ-

entiated and their sensitivity predicted by personalized models has generally been revised

towards lower scores (i.e., higher sensitivity). Similar to the CRISPR data analysis, three

sensitive cell lines have been shifted to the right and are misinterpreted by the model. As a

result, the correlation restricted to BRAF-mutated cell lines is no longer significant (R = 0.26,

p.value = 0.1).

An investigative tool

These personalized models are not primarily intended to be predictive tools but rather used to

reason and explore the possible mechanisms and specificities of each cell line. By comparing

the profiles of cell lines, it is possible to trace the origin of some of their differences of behav-

iors in a reverse engineering approach and within the framework of the mechanisms found in

the literature and reported in the model. To continue on the previous examples, the two mela-

noma cell lines, HT-144 and SK-MEL-24, share the same mutational profiles but have very dif-

ferent sensitivities to BRAF targeting (Fig 5C). This inconsistency is partially corrected by the
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addition of the RNA data, which allows the model to take into account the difference in CRAF

expression between the two cell lines. In fact, CRAF is a crucial node for the network since it is

necessary for the reactivation of the MAPK pathway after BRAF inhibition. Therefore, the

high sensitivity of SK-MEL-24 may be explained by its low CRAF expression level, which

makes the reactivation of the MAPK pathway more difficult for this cell line. Conversely, in

HT-144, the high level of CRAF expression allows the signal to flow properly through this

pathway even after BRAF inhibition, thus making this cell line more resistant. The importance

of CRAF expression is also evident in HT-29, a CRC BRAF mutated cell line with other impor-

tant mutations (PI3K activation and p53 deletion). However, it remains sensitive to treatment,

due to its very low level of CRAF expression. This resistance mechanism related to CRAF is

referenced in the literature [64].

Another interesting contribution of RNA appears in the melanoma cell line UACC-62,

which is particularly sensitive to treatment. The model is able to correctly predict its response

once RNA levels are integrated. In this case, the reason for sensitivity seems to be due to the

low level of PDPK1, which makes it difficult to activate p70 and thus trigger the resistance

linked to PI3K/AKT pathway activation. Similarly, the CRC resistant cell line, HT55, which

carries only the BRAF mutation, expresses high levels of PDPK1, in addition to high levels of

CRAF, supporting the idea that the presence of both MAPK and PI3K/AKT pathways may

confer resistance to BRAF inhibition treatments. We can also mention a cluster of RAS

mutated cell lines, usually NRAS mutated for melanomas (e.g., SK-MEL-2) and KRAS for

colorectal cancers (e.g., COLO-678), which are classified by the model as resistant. The impor-

tance of PDK1 in resistance mechanisms has already been emphasized in the literature [65].

Interestingly, in these cell lines, a low level of CRAF is not enough to block the signal of the

MAPK pathway, which is stronger in the model because of the simulation of the RAS mutation

(RAS is set to 1).

Only SK-MEL-30 appears to be incorrectly classified and is observed to be more sensitive

than the other cell lines with a similar mutation profile. This could be due to the fact that our

network is incomplete and not able to account for some alterations responsible for this cell

line sensitivity. The problem may also come from the fact that this cell line contains a frame-

shift mutation of RPS6KB2 (p70 node) not referenced in OncoKB and therefore not included

in the simulation.

The versatility of the logical formalism makes it possible to test other node inhibitions as in

Fig 6, but remains limited by the scope of the model. Since the present model has been

designed around BRAF, its regulators have been carefully selected and implemented, which is

not necessarily the case for other nodes of the model. Therefore, these personalized models

can be used to study how comprehensive the descriptions of the regulation of other nodes or

parts of the model are. Thus, model simulations show that response trends to TP53 inhibition

are consistently recovered by the model (Fig 6B) but the simple regulation of p53 in the model

results in coarse-grained patterns, although slightly improved by addition of RNA data. Similar

analyses regarding the targeting of PIK3CA (in CRISPR data) simulated, in the model, by the

inhibition of PI3K node, can be performed (Fig 6C). Low correlations are an indication

highlighting the insufficient regulation of the node. In the same way, it is possible to apply the

same pipeline to other cancers, for example by adding thyroid cancer cell lines, sometimes

BRAF-mutated, to the analysis. Applicability can also be extended using logical models already

published. The use of another cancer logical model, from [17], thus makes it possible to study

the response to MEK inhibitors, insufficiently described in the previously studied model, but

does not make it possible to recover the responses to BRAF inhibitors, in particular because of

a less precise description, with a single RAF node representing both BRAF and CRAF genes

(see supplemental information in the GitHub of the study).
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Comparison of the mechanistic approach with machine learning methods

In order to provide comparison elements unbiased by prior knowledge or by the construc-

tion of the model, we performed some simple machine learning algorithms. Random forests

have been fitted with inputs (mutations and/or RNA data) and outputs (sensitivities to drug

or CRISPR BRAF inhibition) similar to those of logical models and the corresponding pre-

dictive accuracies are reported in S2 Fig. The first insight concerns data processing. The per-

centages of variance explained by the models are similar (around 70% of explained variance

for drug sensitivity prediction) in the following three cases: unprocessed original data (thou-

sands of genes), unprocessed original data for model-related genes only (tens of genes), and

processed profiles of cell lines (tens of genes). This supports the choice of a model with a

small number of relevant genes, which appear to contain most of the information needed for

prediction. Second, the absolute level of performance appears much lower for CRISPR

(between 30 and 50%) probably suffering from the lower number of samples, especially in

cases where the number of variables is the highest. This tends to reinforce the interest of

mechanistic approaches that do not use any training on the data for smaller datasets, less suit-

able for learning. Finally, while mutations and RNA data seem to provide the same predictive

power (especially for drugs), using the two together does not necessarily result in a better

performance.

Variable importance in these different random forests are reported in S3 Fig and are consis-

tent with the analysis of mechanistic models. The mutational status of BRAF is definitely the

most important variable followed by mutations in RAS or TP53. Concerning RNA levels, the

most explanatory variables seem to be FOXD3 or PTEN, in line with model definitions.

Fig 6. Application of personalized models to other CRISPR targets. (A) Personalization strategies using either mutations only (as discrete data) or

combined with RNA (as continuous data) with their corresponding scatter plots in panels B and C. (B) Scatter plot comparing normalized Proliferation
scores of p53 inhibition in the models with experiment sensitivity of cell lines to TP53 CRISPR inhibition, indicating p53 mutational status as

interpreted in the model. Pearson correlations and the corresponding p-values are shown. (C) Similar analysis as in panel B with PI3K model node and

PIK3CA CRISPR inhibition.

https://doi.org/10.1371/journal.pcbi.1007900.g006
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Discussion

The emergence of high-throughput data has made it easier to generate models for prognostic

or diagnostic predictions in the field of cancer. The numerous lists of genes, biomarkers and

predictors proposed have, however, often been difficult to interpret because of their sometimes

uncertain clinical impact and little overlap between competing approaches [66]. Methods that

can be interpreted by design, which integrate a priori biological knowledge, therefore appear

to be an interesting complement able to reconcile the omics data generated and the knowledge

accumulated in the literature.

These benefits come at the cost of having accurate expert description of the problem to pro-

vide a relevant basis to the mechanistic models. This is particularly true in this work since the

personalized models all derive from the same structure of which they are partially constrained

versions. It is therefore necessary to have a generic model that is both sufficiently accurate and

broad enough so that the data integration allows the expression of the singularities of each cell

line. If this is not the case, the learning of logical rules or the use of ensemble modeling could

be favoured, usually including perturbation time-series data [67]. It should also be noted that,

in the BRAF model presented here, the translation of biological knowledge into a logical rule is

not necessarily deterministic and unambiguous. The choices here have been made based on

the interpretation of the literature only. And the presence of certain outliers, i.e., cell lines

whose behavior is not explained by the models, may indeed result from the limitations of the

model, either in its scope (important genes not integrated), or in its definition (incorrect logi-

cal rules). More global or data-driven approaches to define the model would be possible but

would require different training/validation steps and different sets of data.

The second key point is the omics data used. For practical reasons, we have focused on

mutation and RNA data. The legitimacy of the former is not in doubt, but their interpretation

is, on the other hand, a crucial point whose relevance must be systematically verified. The

omission or over-interpretation of certain mutations can severely affect the behavior of per-

sonalized models. Validation using sensitivity data provides a good indicator in this respect.

However, the question is broader for RNA data: are they relevant data to be used to personalize

models, i.e., can they be considered good proxies for node activity? The protein nature of

many nodes in the model would encourage the use of protein level data instead, or even phos-

phorylation levels if they were available for these data. One perspective could even be to push

personalization to the point of defining different types of data or even different personalization

strategies for each node according to the knowledge of the mechanisms at work in the corre-

sponding biological entity. A balance should then be found to allow a certain degree of auto-

mation in the code and to avoid overfitting.

Despite these limitations, the results described above support the importance of combining

the integration of different types of data to better explain differences in drug sensitivities.

There was no doubt about this position of principle in general [68], and in particular in

machine learning methods [3, 69]. The technical implementation of these multi-omic integra-

tions is nevertheless more difficult in mechanistic models where the relationships between the

different types of data need to be more explicitly formulated [8]. The present work therefore

reinforces the possibility and value of integrating different types of data in a mechanistic

framework to improve relevance and interpretation and illustrates this by highlighting the

value of RNA data in addition to mutation data in predicting the response of cell lines to

BRAF inhibition. It is also interesting to note that the most powerful algorithm for predicting

drug sensitivities, the Bayesian multitask MKL, combines this consideration of the multi-

omics nature of the problem, through multi-view learning, with multi-task learning. This fea-

ture allows sharing information by learning about different drugs simultaneously. This can be
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a solution to the small sample sizes mentioned above. In the same way, the study of different

drugs simultaneously through a mechanistic model is also possible and can be fruitful: it is

then especially the biological structure of the model that represents this shared information

that facilitates generalization. In addition, one piece of data that could be further exploited is

that of the specific behavior of the drugs or inhibitors studied, since for instance some BRAF

inhibitors have affinities that vary according to mutations in the BRAF gene itself. PLX-4720

was shown to have a paradoxical activation effect on wild-type BRAF despite its inhibitory

effect on mutated BRAF [70]. This mechanism is more complex than the one modeled here

and also involves the status of the RAS gene. Thus, the simplistic representation of PLX-4720

as an unconditional inhibitor of BRAF remains a valid approximation in a qualitative model

designed to highlight differences in sensitivities, but the quantitative study of the magnitude of

these differences would require a more sophisticated model. The integration of truly precise

data on the nature of the drug is nevertheless limited by logical formalism and is more often

found in less constrained approaches [71].

To conclude, we provide a comprehensive pipeline from clinical question to a validated

mechanistic model which uses different types of omics data and adapts to dozens of different

cell lines. This work, which is based only on the interpretation of data and not on the training

of the model, continues some previous work that has already demonstrated the value of mech-

anistic approaches to answer questions about response to treatment, especially using dynamic

data [72], and sometimes about the same pathways [8]. In this context, our approach proves

the interest of logical formalism to make use of scarce and static data facilitating application to

a wide range of issues and datasets in a way that is sometimes complementary to learning-

based approaches.

Supporting information

S1 Fig. Mapping of the data in the RNAseq data on the regulatory network. The expression

data from both melanoma and colorectal cell lines used in this study are mapped onto the net-

work. The scores correspond to the difference in the mean expression of the normalized data

(using PROFILE method [35]). Red nodes show higher gene expression in melanomas and

blue nodes higher expression in colorectal cancer cell lines. If most active nodes are equivalent

to phosphorylated data, the mapping of RNAseq data informs on the gene status and the possi-

bilities to activate the nodes. Thus, conclusions should be made with this fact in mind. At the

gene level, then, genes such as SOX10, FOXD3, AKT, p21 and SPRY tend to have a higher

expression in melanomas confirming their role in response to the treatment, whereas genes

such as EGFR, ERBB2, MET, PTEN and FGFR2 are more relavant to colorectal cancers. This

figure reinforces the idea that the mechanisms related to the response to anti-BRAF treatment

may have different outcomes in both cancers bascule of a different gene context.

(TIF)

S2 Fig. Performances of random forests for BRAF sensitivity prediction. Random forests

algorithms are trained with different omics types (mutations, RNA or both) and data process-

ing (original data or processed data) to predict sensitivity to BRAF inhibition, through drug or

CRISPR screening. Performances are expressed as percentage of explained variance by the fit-

ted random forests.

(TIF)

S3 Fig. Variable importance for BRAF sensitivity prediction by random forests. Variable

importance for inhibition of BRAF by drugs (first row in S2 Fig), when random forests algo-

rithms are trained with different omics types (mutations, RNA or both) and data processing
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(original data or processed data). Higher values of variable importance correspond to higher

decrease in prediction performance when the variable is disturbed by permutation and there-

fore to variables with a positive contribution to predictive performance.

(TIF)
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Visualization: Jonas Béal, Lorenzo Pantolini.
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